The mechanotransduction pathways that mediate cellular responses to contact forces are better understood than those that mediate response to distance forces, especially the force of gravity. Removing or reducing gravity for significant periods of time involves either sending samples to space, inducing diamagnetic levitation with high magnetic fields, or continually reorienting samples for a period, all in a manner that supports cell culturing. Undesired secondary effects due to high magnetic fields or shear forces associated with fluid flow while reorienting must be considered in the design of ground-based devices. We have developed a lab-friendly and compact random positioning machine (RPM) that fits in a standard tissue culture incubator. Using a two-axis gimbal, it continually reorients samples in a manner that produces an equal likelihood that all possible orientations are visited. We contribute a new control algorithm by which the distribution of probabilities over all possible orientations is completely uniform. Rather than randomly varying gimbal axis speed and/or direction as in previous algorithms (which produces non-uniform probability distributions of orientation), we use inverse kinematics to follow a trajectory with a probability distribution of orientations that is uniform by construction. Over a time period of 6 h of operation using our RPM, the average gravity is within 0.001 23% of the gravity of Earth. Shear forces are minimized by limiting the angular speed of both gimbal motors to under 42 °/s. We demonstrate the utility of our RPM by investigating the effects of simulated microgravity on adherent human osteoblasts immediately after retrieving samples from our RPM. Cytoskeletal disruption and cell shape changes were observed relative to samples cultured in a 1 g environment. We also found that subjecting human osteoblasts in suspension to simulated microgravity resulted in less filamentous actin and lower cell stiffness.

1.
S. W.
Crowder
,
V.
Leonardo
,
T.
Whittaker
,
P.
Papathanasiou
, and
M. M.
Stevens
, “
Material cues as potent regulators of epigenetics and stem cell function
,”
Cell Stem Cell
18
(
1
),
39
52
(
2016
).
2.
L. J.
Chen
,
S. Y.
Wei
, and
J. J.
Chiu
, “
Mechanical regulation of epigenetics in vascular biology and pathobiology
,”
J. Cell. Mol. Med.
17
(
4
),
437
448
(
2013
).
3.
K. H.
Vining
and
D. J.
Mooney
, “
Mechanical forces direct stem cell behaviour in development and regeneration
,”
Nat. Rev. Mol. Cell Biol.
18
(
12
),
728
(
2017
).
4.
A. J.
Steward
and
D. J.
Kelly
, “
Mechanical regulation of mesenchymal stem cell differentiation
,”
J. Anat.
227
(
6
),
717
731
(
2015
).
5.
J.
Wang
,
H.
Chen
,
A.
Seth
, and
C. A.
McCulloch
, “
Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts
,”
Am. J. Physiol.: Heart Circ. Physiol.
285
(
5
),
H1871
H1881
(
2003
).
6.
G. K.
Owens
, “
Role of mechanical strain in regulation of differentiation of vascular smooth muscle cells
,”
Circ. Res.
79
(
5
),
1054
1055
(
1996
).
7.
A. M.
Handorf
,
Y.
Zhou
,
M. A.
Halanski
, and
W.-J.
Li
, “
Tissue stiffness dictates development, homeostasis, and disease progression
,”
Organogenesis
11
(
1
),
1
15
(
2015
).
8.
B.
Suki
,
K. R.
Lutchen
, and
E. P.
Ingenito
, “
On the progressive nature of emphysema: Roles of proteases, inflammation, and mechanical forces
,”
Am. J. Respir. Crit. Care Med.
168
(
5
),
516
521
(
2003
).
9.
D. B.
Burr
,
A. G.
Robling
, and
C. H.
Turner
, “
Effects of biomechanical stress on bones in animals
,”
Bone
30
(
5
),
781
786
(
2002
).
10.
T. C.
Lee
and
D.
Taylor
, “
Bone remodelling: Should we cry Wolff?
,”
Ir. J. Med. Sci.
168
(
2
),
102
(
1999
).
11.
W.
Yu
,
H.
Qu
,
G.
Hu
,
Q.
Zhang
,
K.
Song
,
H.
Guan
 et al., “
A microfluidic-based multi-shear device for investigating the effects of low fluid-induced stresses on osteoblasts
,”
PLoS One
9
(
2
),
e89966
(
2014
).
12.
F. M.
Pavalko
,
N. X.
Chen
,
C. H.
Turner
,
D. B.
Burr
,
S.
Atkinson
,
Y.-F.
Hsieh
 et al., “
Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions
,”
Am. J. Physiol.: Cell Physiol.
275
(
6
),
C1591
C1601
(
1998
).
13.
Y.
Shao
,
X.
Tan
,
R.
Novitski
,
M.
Muqaddam
,
P.
List
,
L.
Williamson
 et al., “
Uniaxial cell stretching device for live-cell imaging of mechanosensitive cellular functions
,”
Rev. Sci. Instrum.
84
(
11
),
114304
(
2013
).
14.
J.
Heureaux
,
D.
Chen
,
V. L.
Murray
,
C. X.
Deng
, and
A. P.
Liu
, “
Activation of a bacterial mechanosensitive channel in mammalian cells by cytoskeletal stress
,”
Cell. Mol. Bioeng.
7
(
3
),
307
319
(
2014
).
15.
K.
Hayakawa
,
H.
Tatsumi
, and
M.
Sokabe
, “
Actin stress fibers transmit and focus force to activate mechanosensitive channels
,”
J. Cell Sci.
121
(
4
),
496
503
(
2008
).
16.
J.
Heureaux-Torres
,
K. E.
Luker
,
H.
Haley
,
M.
Pirone
,
L. M.
Lee
,
Y.
Herrera
 et al., “
The effect of mechanosensitive channel MscL expression in cancer cells on 3D confined migration
,”
APL Bioeng.
2
(
3
),
032001
(
2018
).
17.
P. M.
Gilbert
,
K. L.
Havenstrite
,
K. E. G.
Magnusson
,
A.
Sacco
,
N. A.
Leonardi
,
P.
Kraft
 et al., “
Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture
,”
Science
329
(
5995
),
1078
1081
(
2010
).
18.
J.
Fu
,
Y.-K.
Wang
,
M. T.
Yang
,
R. A.
Desai
,
X.
Yu
,
Z.
Liu
 et al., “
Mechanical regulation of cell function with geometrically modulated elastomeric substrates
,”
Nat. Methods
7
(
9
),
733
(
2010
).
19.
H.
Lv
,
L.
Li
,
M.
Sun
,
Y.
Zhang
,
L.
Chen
,
Y.
Rong
 et al., “
Mechanism of regulation of stem cell differentiation by matrix stiffness
,”
Stem Cell Res. Ther.
6
(
1
),
103
(
2015
).
20.
W.
Xu
,
R.
Mezencev
,
B.
Kim
,
L.
Wang
,
J.
McDonald
, and
T.
Sulchek
, “
Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells
,”
PLoS One
7
(
10
),
e46609
(
2012
).
21.
T.
Watanabe
,
H.
Kuramochi
,
A.
Takahashi
,
K.
Imai
,
N.
Katsuta
,
T.
Nakayama
 et al., “
Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (−)-epigallocatechin gallate-treated cells
,”
J. Cancer Res. Clin. Oncol.
138
(
5
),
859
866
(
2012
).
22.
V.
Swaminathan
,
K.
Mythreye
,
E. T.
O’Brien
,
A.
Berchuck
,
G. C.
Blobe
, and
R.
Superfine
, “
Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines
,”
Cancer Res.
71
(
15
),
5075
5080
(
2011
).
23.
A.
Sundaresan
,
D.
Risin
, and
N. R.
Pellis
, “
Cell growth in microgravity
,” in
Reviews in Cell Biology and Molecular Medicine
(
Wiley-VCH
,
2006
).
24.
D.
Ingber
, “
How cells (might) sense microgravity
,”
FASEB J.
13
(
9001
),
S3
S15
(
1999
).
25.
A. P.
Liu
,
O.
Chaudhuri
, and
S. H.
Parekh
, “
New advances in probing cell–extracellular matrix interactions
,”
Integr. Biol.
9
(
5
),
383
405
(
2017
).
26.
G. T.
Charras
and
M. A.
Horton
, “
Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation
,”
Biophys. J.
82
(
6
),
2970
2981
(
2002
).
27.
M.-H.
Yen
,
Y.-H.
Chen
,
Y.-S.
Liu
, and
O. K.-S.
Lee
, “
Alteration of Young’s modulus in mesenchymal stromal cells during osteogenesis measured by atomic force microscopy
,”
Biochem. Biophys. Res. Commun.
526
(
3
),
827
832
(
2020
).
28.
J.
Krüger
,
K.
Singh
,
A.
O’Neill
,
C.
Jackson
,
A.
Morrison
, and
P.
O’Brien
, “
Development of a microfluidic device for fluorescence activated cell sorting
,”
J. Micromech. Microeng.
12
(
4
),
486
(
2002
).
29.
M. M.
Wang
,
E.
Tu
,
D. E.
Raymond
,
J. M.
Yang
,
H.
Zhang
,
N.
Hagen
 et al., “
Microfluidic sorting of mammalian cells by optical force switching
,”
Nat. Biotechnol.
23
(
1
),
83
87
(
2005
).
30.
A.-E.
Saliba
,
L.
Saias
,
E.
Psychari
,
N.
Minc
,
D.
Simon
,
F.-C.
Bidard
 et al., “
Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
33
),
14524
14529
(
2010
).
31.
F. E.
Garrett-Bakelman
,
M.
Darshi
,
S. J.
Green
,
R. C.
Gur
,
L.
Lin
,
B. R.
Macias
 et al., “
The NASA twins study: A multidimensional analysis of a year-long human spaceflight
,”
Science
364
(
6436
),
eaau8650
(
2019
).
32.
S. L.
Wuest
,
S.
Richard
,
S.
Kopp
,
D.
Grimm
, and
M.
Egli
, “
Simulated microgravity: Critical review on the use of random positioning machines for mammalian cell culture
,”
BioMed Res. Int.
2015
,
971474
.
33.
C.
Ulbrich
,
M.
Wehland
,
J.
Pietsch
,
G.
Aleshcheva
,
P.
Wise
,
J.
van Loon
 et al., “
The impact of simulated and real microgravity on bone cells and mesenchymal stem cells
,”
BioMed Res. Int.
2014
,
928507
.
34.
G.
Clément
and
A.
Pavy-Le Traon
, “
Centrifugation as a countermeasure during actual and simulated microgravity: A review
,”
Eur. J. Appl. Physiol.
92
(
3
),
235
248
(
2004
).
35.
D.
Grimm
,
M.
Wehland
,
J.
Pietsch
,
G.
Aleshcheva
,
P.
Wise
,
J.
van Loon
 et al., “
Growing tissues in real and simulated microgravity: New methods for tissue engineering
,”
Tissue Eng., Part B
20
(
6
),
555
566
(
2014
).
36.
R.
Herranz
,
O. J.
Larkin
,
C. E.
Dijkstra
,
R. J.
Hill
,
P.
Anthony
,
M. R.
Davey
 et al., “
Microgravity simulation by diamagnetic levitation: Effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster
,”
BMC Genomics
13
(
1
),
52
(
2012
).
37.
M. D.
Simon
and
A. K.
Geim
, “
Diamagnetic levitation: Flying frogs and floating magnets
,”
J. Appl. Phys.
87
(
9
),
6200
6204
(
2000
).
38.
B. E.
Hammer
,
L. S.
Kidder
,
P. C.
Williams
, and
W. W.
Xu
, “
Magnetic levitation of MC3T3 osteoblast cells as a ground-based simulation of microgravity
,”
Microgravity Sci. Technol.
21
(
4
),
311
(
2009
).
39.
H.
Gao
,
P. S.
Ayyaswamy
, and
P.
Ducheyne
, “
Dynamics of a microcarrier particle in the simulated microgravity environment of a rotating-wall vessel
,”
Microgravity Sci. Technol.
10
(
3
),
154
165
(
1997
).
40.
R. P.
Schwarz
,
T. J.
Goodwin
, and
D. A.
Wolf
, “
Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity
,”
J. Tissue Cult. Methods
14
(
2
),
51
57
(
1992
).
41.
N.
Rucci
,
S.
Migliaccio
,
B. M.
Zani
,
A.
Taranta
, and
A.
Teti
, “
Characterization of the osteoblast‐like cell phenotype under microgravity conditions in the NASA‐approved rotating wall vessel bioreactor (RWV)
,”
J. Cell. Biochem.
85
(
1
),
167
179
(
2002
).
42.
B.
Svejgaard
,
M.
Wehland
,
X.
Ma
,
S.
Kopp
,
J.
Sahana
,
E.
Warnke
 et al., “
Common effects on cancer cells exerted by a random positioning machine and a 2D clinostat
,”
PLoS One
10
(
8
),
e0135157
(
2015
).
43.
A. R.
Qian
,
D.
Li
,
J.
Han
,
X.
Gao
,
S. M.
Di
,
W.
Zhang
 et al., “
Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats
,”
IEEE Trans. Biomed. Eng.
59
(
5
),
1374
1380
(
2012
).
44.
P.
Eiermann
,
S.
Kopp
,
J.
Hauslage
,
R.
Hemmersbach
,
R.
Gerzer
, and
K.
Ivanova
, “
Adaptation of a 2-D clinostat for simulated microgravity experiments with adherent cells
,”
Microgravity Sci. Technol.
25
(
3
),
153
159
(
2013
).
45.
T.
Russomano
,
R. B.
Cardoso
,
F. P.
Falcao
,
G.
Dalmarco
,
C. R. V.
Dos Santos
,
L. G. F.
Dos Santos
 et al., “
Development and validation of a 3D clinostat for the study of cells during microgravity simulation
,” in
2005 IEEE Engineering in Medicine and Biology 27th Annual Conference
(
IEEE
,
2005
), pp.
564
566
.
46.
M.
Yamashita
,
A.
Yamashita
, and
M.
Yamada
, “
Three dimensional (3D-) clinostat and its operational characteristics
,”
Biol. Sci. Space
11
(
2
),
112
118
(
1997
).
47.
J.
Hauslage
,
V.
Cevik
, and
R.
Hemmersbach
, “
Pyrocystis noctiluca represents an excellent bioassay for shear forces induced in ground-based microgravity simulators (clinostat and random positioning machine)
,”
npj Microgravity
3
(
1
),
12
(
2017
).
48.
D. M.
Klaus
,
P.
Todd
, and
A.
Schatz
, “
Functional weightlessness during clinorotation of cell suspensions
,”
Adv. Space Res.
21
(
8–9
),
1315
1318
(
1998
).
49.
S.
Brungs
,
J.
Hauslage
,
R.
Hilbig
,
R.
Hemmersbach
, and
R.
Anken
, “
Effects of simulated weightlessness on fish otolith growth: Clinostat versus rotating-wall vessel
,”
Adv. Space Res.
48
(
5
),
792
798
(
2011
).
50.
A. R.
Qian
,
X.
Gao
,
W.
Zhang
,
J. B.
Li
,
Y.
Wang
,
S. M.
Di
 et al., “
Large gradient high magnetic fields affect osteoblast ultrastructure and function by disrupting collagen I or fibronectin/αβ1 integrin
,”
PLoS One
8
(
1
),
e51036
(
2013
).
51.
J. J. W. A.
van Loon
, “
Some history and use of the random positioning machine, RPM, in gravity related research
,”
Adv. Space Res.
39
(
7
),
1161
1165
(
2007
).
52.
Y. J.
Kim
,
A. J.
Jeong
,
M.
Kim
,
C.
Lee
,
S.-K.
Ye
, and
S.
Kim
, “
Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostat
,”
Biomed. Eng.
16
(
1
),
48
(
2017
).
53.
M.-Z.
Shao
and
N.
Badler
, “
Spherical sampling by Archimedes’ theorem
,” Technical Report No. MS-CIS-96-02,
1996
, p.
184
.
54.
M. I.
Shamos
and
D.
Hoey
, “
Geometric intersection problems
,” in
17th Annual Symposium on Foundations of Computer Science (SFCS 1976)
(
IEEE
,
1976
), pp.
208
215
.
55.
J.
Wood
and
S.
Kim
, Plane sweep algorithm,
2008
.
56.
L. M.
Lee
and
A. P.
Liu
, “
A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels
,”
Lab Chip
15
(
1
),
264
273
(
2015
).
57.
L. M.
Lee
and
A. P.
Liu
, “
The application of micropipette aspiration in molecular mechanics of single cells
,”
J. Nanotechnol. Eng. Med.
5
(
4
),
040902
(
2014
).
58.
D.
Sarkar
,
T.
Nagaya
,
K.
Koga
,
Y.
Nomura
,
R.
Gruener
, and
H.
Seo
, “
Culture in vector‐averaged gravity under clinostat rotation results in apoptosis of osteoblastic ROS 17/2.8 cells
,”
J. Bone Miner. Res.
15
(
3
),
489
498
(
2000
).
59.
Q. S.
Li
,
G. Y. H.
Lee
,
C. N.
Ong
, and
C. T.
Lim
, “
AFM indentation study of breast cancer cells
,”
Biochem. Biophys. Res. Commun.
374
(
4
),
609
613
(
2008
).
60.
M. Z.
Nassef
,
S.
Kopp
,
M.
Wehland
,
D.
Melnik
,
J.
Sahana
,
M.
Krüger
 et al., “
Real microgravity influences the cytoskeleton and focal adhesions in human breast cancer cells
,”
Int. J. Mol. Sci.
20
(
13
),
3156
(
2019
).
61.
Z.
Chen
,
Q.
Luo
,
C.
Lin
,
D.
Kuang
, and
G.
Song
, “
Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation
,”
Sci. Rep.
6
(
1
),
30322
(
2016
).
62.
Z.
Dai
,
F.
Wu
,
J.
Chen
,
H.
Xu
,
H.
Wang
,
F.
Guo
 et al., “
Actin microfilament mediates osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity
,”
PLoS One
8
(
5
),
e63661
(
2013
).
63.
L. M.
Lee
,
J. W.
Lee
,
D.
Chase
,
D.
Gebrezgiabhier
, and
A. P.
Liu
, “
Development of an advanced microfluidic micropipette aspiration device for single cell mechanics studies
,”
Biomicrofluidics
10
(
5
),
054105
(
2016
).
64.
J.
Lammerding
, “
Mechanics of the nucleus
,”
Compr. Physiol.
1
(
2
),
783
807
(
2011
).

Supplementary Material

You do not currently have access to this content.