Different imaging solutions have been proposed over the last few decades, aimed at three-dimensional (3D) space reconstruction and obstacle detection, either based on stereo-vision principles using active pixel sensors operating in the visible part of the spectra or based on active Near Infra-Red (NIR) illumination applying the time-of-flight principle, to mention just a few. If extremely low quantum efficiencies for NIR active illumination yielded by silicon-based detector solutions are considered together with the huge photon noise levels produced by the background illumination accompanied by Rayleigh scattering effects taking place in outdoor applications, the operating limitations of these systems under harsh weather conditions, especially if relatively low-power active illumination is used, are evident. If longer wavelengths for active illumination are applied to overcome these issues, indium gallium arsenide (InGaAs)-based photodetectors become the technology of choice, and for low-cost solutions, using a single InGaAs photodetector or an InGaAs line-sensor becomes a promising choice. In this case, the principles of Single-Pixel Imaging (SPI) and compressive sensing acquire a paramount importance. Thus, in this paper, we review and compare the different SPI developments reported. We cover a variety of SPI system architectures, modulation methods, pattern generation and reconstruction algorithms, embedded system approaches, and 2D/3D image reconstruction methods. In addition, we introduce a Near Infra-Red Single-Pixel Imaging (NIR-SPI) sensor aimed at detecting static and dynamic objects under outdoor conditions for unmanned aerial vehicle applications.

1.
D.
Durini
and
D.
Arutinov
, “
2-operational principles of silicon image sensors
,” in
High Performance Silicon Imaging
, Woodhead Publishing Series in Electronic and Optical Materials, 2nd ed., edited by
D.
Durini
(
Woodhead Publishing
,
2020
), pp.
25
73
.
2.
N.
Ben-Yosef
and
G.
Sirat
, “
Real-time spatial filtering utilizing the piezoelectric-elasto-optic effect
,”
Opt. Acta: Int. J. Opt.
29
,
419
423
(
1982
).
3.
D. L.
Donoho
, “
Compressed sensing
,”
IEEE Trans. Inf. Theory
52
,
1289
1306
(
2006
).
4.
D.
Takhar
,
J. N.
Laska
,
M. B.
Wakin
,
M. F.
Duarte
,
D.
Baron
,
S.
Sarvotham
,
K. F.
Kelly
, and
R. G.
Baraniuk
, “
A new compressive imaging camera architecture using optical-domain compression
,”
Proc. SPIE
6065
,
606509
(
2006
).
5.
M. F.
Duarte
,
M. A.
Davenport
,
D.
Takhar
,
J. N.
Laska
,
T.
Sun
,
K. F.
Kelly
, and
R. G.
Baraniuk
, “
Single-pixel imaging via compressive sampling
,”
IEEE Signal Process. Mag.
25
,
83
91
(
2008
).
6.
S. S.
Welsh
,
M. P.
Edgar
,
R.
Bowman
,
P.
Jonathan
,
B.
Sun
, and
M. J.
Padgett
, “
Fast full-color computational imaging with single-pixel detectors
,”
Opt. Express
21
,
23068
23074
(
2013
).
7.
B.
Sun
,
M. P.
Edgar
,
R.
Bowman
,
L. E.
Vittert
,
S.
Welsh
,
A.
Bowman
, and
M. J.
Padgett
, “
3D computational imaging with single-pixel detectors
,”
Science
340
,
844
847
(
2013
).
8.
P.
Sen
,
B.
Chen
,
G.
Garg
,
S. R.
Marschner
,
M.
Horowitz
,
M.
Levoy
, and
H. P. A.
Lensch
, “
Dual photography
,”
ACM Trans. Graphics
24
,
745
755
(
2005
).
9.
E. J.
Candes
and
T.
Tao
, “
Near-optimal signal recovery from random projections: Universal encoding strategies?
,”
IEEE Trans. Inf. Theory
52
,
5406
5425
(
2006
).
10.
E.
Candès
and
J.
Romberg
, “
Sparsity and incoherence in compressive sampling
,”
Inverse Probl.
23
,
969
985
(
2007
).
11.
G. A.
Howland
,
D. J.
Lum
,
M. R.
Ware
, and
J. C.
Howell
, “
Photon counting compressive depth mapping
,”
Opt. Express
21
,
23822
23837
(
2013
).
12.
G. A.
Howland
,
P. B.
Dixon
, and
J. C.
Howell
, “
Photon-counting compressive sensing laser radar for 3D imaging
,”
Appl. Opt.
50
,
5917
5920
(
2011
).
13.
D.
Shrekenhamer
,
C. M.
Watts
, and
W. J.
Padilla
, “
Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator
,”
Opt. Express
21
,
12507
12518
(
2013
).
14.
W.-K.
Yu
,
X.-F.
Liu
,
X.-R.
Yao
,
C.
Wang
,
Y.
Zhai
, and
G.-J.
Zhai
, “
Complementary compressive imaging for the telescopic system
,”
Sci. Rep.
4
,
5834
(
2014
).
15.
H.
Dai
,
G.
Gu
,
W.
He
,
F.
Liao
,
J.
Zhuang
,
X.
Liu
, and
Q.
Chen
, “
Adaptive compressed sampling based on extended wavelet trees
,”
Appl. Opt.
53
,
6619
6628
(
2014
).
16.
N.
Radwell
,
K. J.
Mitchell
,
G. M.
Gibson
,
M. P.
Edgar
,
R.
Bowman
, and
M. J.
Padgett
, “
Single-pixel infrared and visible microscope
,”
Optica
1
,
285
289
(
2014
).
17.
S. M.
Hornett
,
R. I.
Stantchev
,
M. Z.
Vardaki
,
C.
Beckerleg
, and
E.
Hendry
, “
Subwavelength terahertz imaging of graphene photoconductivity
,”
Nano Lett.
16
,
7019
7024
(
2016
).
18.
G. M.
Gibson
,
B.
Sun
,
M. P.
Edgar
,
D. B.
Phillips
,
N.
Hempler
,
G. T.
Maker
,
G. P. A.
Malcolm
, and
M. J.
Padgett
, “
Real-time imaging of methane gas leaks using a single-pixel camera
,”
Opt. Express
25
,
2998
3005
(
2017
).
19.
C.
Higham
,
R.
Murray-Smith
,
M.
Padgett
, and
M. P.
Edgar
, “
Deep learning for real-time single-pixel video
,”
Sci. Rep.
8
,
2369
(
2018
).
20.
K.
Nitta
,
Y.
Yano
,
C.
Kitada
, and
O.
Matoba
, “
Fast computational ghost imaging with laser array modulation
,”
Appl. Sci.
9
,
4807
(
2019
).
21.
W.-K.
Yu
, “
Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort
,”
Sensors
19
,
4122
(
2019
).
22.
Q.
Yi
,
L. Z.
Heng
,
L.
Liang
,
Z.
Guangcan
,
C. F.
Siong
, and
Z.
Guangya
, “
Hadamard transform-based hyperspectral imaging using a single-pixel detector
,”
Opt. Express
28
,
16126
16139
(
2020
).
23.
A.
Gatti
,
E.
Brambilla
,
M.
Bache
, and
L. A.
Lugiato
, “
Ghost imaging with thermal light: Comparing entanglement and classicalcorrelation
,”
Phys. Rev. Lett.
93
,
093602
(
2004
).
24.
A.
Valencia
,
G.
Scarcelli
,
M.
D’Angelo
, and
Y.
Shih
, “
Two-photon imaging with thermal light
,”
Phys. Rev. Lett.
94
,
063601
(
2005
).
25.
J. H.
Shapiro
, “
Computational ghost imaging
,”
Phys. Rev. A
78
,
061802
(
2008
).
26.
O.
Katz
,
Y.
Bromberg
, and
Y.
Silberberg
, “
Compressive ghost imaging
,”
Appl. Phys. Lett.
95
,
131110
(
2009
).
27.
Y.
Bromberg
,
O.
Katz
, and
Y.
Silberberg
, “
Ghost imaging with a single detector
,”
Phys. Rev. A
79
,
053840
(
2009
).
28.
F.
Ferri
,
D.
Magatti
,
L.
Lugiato
, and
A.
Gatti
, “
Differential ghost imaging
,”
Phys. Rev. Lett.
104
,
253603
(
2010
).
29.
N.
Radwell
,
S.
Johnson
,
M.
Edgar
,
C.
Higham
,
R.
Murray-Smith
, and
M.
Padgett
, “
Deep learning optimized single-pixel LiDAR
,”
Appl. Phys. Lett.
115
,
231101
(
2019
).
30.
Z.
Zhang
,
X.
Ma
, and
J.
Zhong
, “
Single-pixel imaging by means of Fourier spectrum acquisition
,”
Nat. Commun.
6
,
6225
(
2015
).
31.
J.-Z.
Yang
,
M.-F.
Li
,
X.-X.
Chen
,
W.-K.
Yu
, and
A.-N.
Zhang
, “
Single-photon quantum imaging via single-photon illumination
,”
Appl. Phys. Lett.
117
,
214001
(
2020
).
32.
Z.-H.
Xu
,
W.
Chen
,
J.
Penuelas
,
M.
Padgett
, and
M.-J.
Sun
, “
1000 fps computational ghost imaging using LED-based structured illumination
,”
Opt. Express
26
,
2427
2434
(
2018
).
33.
Z.
Zhang
and
J.
Zhong
, “
Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels
,”
Opt. Lett.
41
,
2497
2500
(
2016
).
34.
D.
Stork
and
P.
Gill
, “
Lensless ultra-miniature CMOS computational imagers and sensors
,”
2013
,
186
190
.
35.
V.
Boominathan
,
J. K.
Adams
,
M. S.
Asif
,
B. W.
Avants
,
J. T.
Robinson
,
R. G.
Baraniuk
,
A. C.
Sankaranarayanan
, and
A.
Veeraraghavan
, “
Lensless imaging: A computational renaissance
,”
IEEE Signal Process. Mag.
33
,
23
35
(
2016
).
36.
L.
Chen
,
Z.
Zhou
,
L.
Deng
,
N.
Xi
,
B.
Song
,
Y.
Yang
,
Y.
Hao
, and
Z.
Sun
, “
Single image super resolution infrared camera using carbon nanotube photodetector
,” in
2015 IEEE Sensors
(
IEEE
,
2015
), pp.
1
4
.
37.
E.
Salvador-Balaguer
,
P.
Latorre-Carmona
,
C.
Chabert
,
F.
Pla
,
J.
Lancis
, and
E.
Tajahuerce
, “
Low-cost single-pixel 3D imaging by using an LED array
,”
Opt. Express
26
,
15623
15631
(
2018
).
38.
G. M.
Gibson
,
S. D.
Johnson
, and
M. J.
Padgett
, “
Single-pixel imaging 12 years on: A review
,”
Opt. Express
28
,
28190
28208
(
2020
).
39.
M. P.
Edgar
,
G. M.
Gibson
, and
M. J.
Padgett
, “
Principles and prospects for single-pixel imaging
,”
Nat. Photonics
13
,
13
20
(
2019
).
40.
L.
Bian
,
J.
Suo
,
Q.
Dai
, and
F.
Chen
, “
Experimental comparison of single-pixel imaging algorithms
,”
J. Opt. Soc. Am. A
35
,
78
87
(
2018
).
41.
M.-J.
Sun
and
J.-M.
Zhang
, “
Single-pixel imaging and its application in three-dimensional reconstruction: A brief review
,”
Sensors
19
,
732
(
2019
).
42.
L.
Chengbo
, “
An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing
,” M.S. thesis,
Rice University
,
2010
.
43.
S.
Becker
,
J.
Bobin
, and
E. J.
Candès
, “
Nesta: A fast and accurate first-order method for sparse recovery
,”
SIAM J. Imaging Sci.
4
,
1
39
(
2011
).
44.
P. G.
Vaz
,
D.
Amaral
,
L. F. R.
Ferreira
,
M.
Morgado
, and
J.
Cardoso
, “
Image quality of compressive single-pixel imaging using different Hadamard orderings
,”
Opt. Express
28
,
11666
11681
(
2020
).
45.
M.
Elad
, “
Optimized projections for compressed sensing
,”
IEEE Trans. Signal Process.
55
,
5695
5702
(
2007
).
46.
H.-C.
Liu
, “
Imaging reconstruction comparison of different ghost imaging algorithms
,”
Sci. Rep.
10
,
14626
(
2020
).
47.
J.
Cao
,
D.
Zhou
,
F.
Zhang
,
H.
Cui
,
Y.
Zhang
, and
Q.
Hao
, “
A novel approach of parallel retina-like computational ghost imaging
,”
Sensors
20
,
7093
(
2020
).
48.
E.
Hale
,
W.
Yin
, and
Y.
Zhang
, “
A fixed-point continuation method for l1-regularized minimization with applications to compressed sensing
,” CAAM Technical Report No. TR07-07,
2007
.
49.
B.
Sun
,
S. S.
Welsh
,
M. P.
Edgar
,
J. H.
Shapiro
, and
M. J.
Padgett
, “
Normalized ghost imaging
,”
Opt. Express
20
,
16892
16901
(
2012
).
50.
K.-H.
Luo
,
B.-Q.
Huang
,
W.-M.
Zheng
, and
L.-A.
Wu
, “
Nonlocal imaging by conditional averaging of random reference measurements
,”
Chin. Phys. Lett.
29
,
074216
(
2012
).
51.
W.
Gong
, “
High-resolution pseudo-inverse ghost imaging
,”
Photonics Res.
3
,
234
237
(
2015
).
52.
S. M. M.
Khamoushi
,
Y.
Nosrati
, and
S. H.
Tavassoli
, “
Sinusoidal ghost imaging
,”
Opt. Lett.
40
,
3452
3455
(
2015
).
53.
L.
Wang
and
S.
Zhao
, “
Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform
,”
Photonics Res.
4
,
240
244
(
2016
).
54.
M.-J.
Sun
,
M.
Tong
,
M.
Edgar
,
M.
Padgett
, and
N.
Radwell
, “
A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging
,”
Sci. Rep.
7
,
3464
(
2017
).
55.
W.-K.
Yu
and
Y.-M.
Liu
, “
Single-pixel imaging with origami pattern construction
,”
Sensors
19
,
5135
(
2019
).
56.
Z.
Zhang
,
X.
Wang
,
G.
Zheng
, and
J.
Zhong
, “
Hadamard single-pixel imaging versus Fourier single-pixel imaging
,”
Opt. Express
25
,
19619
19639
(
2017
).
57.
Z.
Zhang
,
X.
Wang
,
G.
Zheng
, and
J.
Zhong
, “
Fast Fourier single-pixel imaging via binary illumination
,”
Sci. Rep.
7
,
12029
(
2017
).
58.
M.
Xi
,
H.
Chen
,
Y.
Yuan
,
G.
Wang
,
Y.
He
,
Y.
Liang
,
J.
Liu
,
H.
Zheng
, and
Z.
Xu
, “
Bi-frequency 3D ghost imaging with Haar wavelet transform
,”
Opt. Express
27
,
32349
32359
(
2019
).
59.
S. G.
Mallat
, “
A theory for multiresolution signal decomposition: The wavelet representation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
11
,
674
693
(
1989
).
60.
G.
Strang
, “
Wavelet transforms versus Fourier transforms
,”
Bull. Am. Math. Soc.
28
,
288
305
(
1993
).
61.
G.
Strang
and
T.
Nguyen
,
Wavelets and Filter Banks
(
Wellesley-Cambridge Press
,
1996
).
62.
Z.
Zhang
,
X.
Li
,
S.
Zheng
,
M.
Yao
,
G.
Zheng
, and
J.
Zhong
, “
Image-free classification of fast-moving objects using ‘learned’ structured illumination and single-pixel detection
,”
Opt. Express
28
,
13269
13278
(
2020
).
63.
J.
Zhang
,
C.
Zhao
, and
W.
Gao
, “
Optimization-inspired compact deep compressive sensing
,”
IEEE J. Sel. Top. Signal Process.
14
,
765
774
(
2020
).
64.
W.
Shi
,
F.
Jiang
,
S.
Zhang
, and
D.
Zhao
, “
Deep networks for compressed image sensing
,”
2017 IEEE International Conference on Multimedia and Expo (ICME)
(
2017
), pp.
877
882
.
65.
Y.
Wang
,
J.
Suo
,
J.
Fan
, and
Q.
Dai
, “
Hyperspectral computational ghost imaging via temporal multiplexing
,”
IEEE Photonics Technol. Lett.
28
,
288
291
(
2016
).
66.
H.
Yu
,
R.
Lu
,
S.
Han
,
H.
Xie
,
G.
Du
,
T.
Xiao
, and
D.
Zhu
, “
Fourier-transform ghost imaging with hard X rays
,”
Phys. Rev. Lett.
117
,
113901
(
2016
).
67.
S.
Augustin
,
S.
Frohmann
,
P.
Jung
, and
H.-W.
Hübers
, “
Mask responses for single-pixel terahertz imaging
,”
Sci. Rep.
8
,
4886
(
2018
).
68.
L.
Zanotto
,
R.
Piccoli
,
J.
Dong
,
D.
Caraffini
,
R.
Morandotti
, and
L.
Razzari
, “
Time-domain terahertz compressive imaging
,”
Opt. Express
28
,
3795
3802
(
2020
).
69.
M.
Wenwen
,
S.
Dongfeng
,
H.
Jian
,
Y.
Kee
,
W.
Yingjian
, and
F.
Chengyu
, “
Sparse Fourier single-pixel imaging
,”
Opt. Express
27
,
31490
31503
(
2019
).
70.
71.
Leds array, at URL: http://www.teleopto.com/teleopto/led-array-systeml; accessed March 2021.
72.
K.
Pieper
,
A.
Bergmann
,
R.
Dengler
, and
C.
Rockstuhl
, “
Using a pseudo-thermal light source to teach spatial coherence
,”
Eur. J. Phys.
39
,
045303
(
2018
).
73.
Y.-X.
Li
,
W.-K.
Yu
,
J.
Leng
, and
S.-F.
Wang
, “
Pseudo-thermal imaging by using sequential-deviations for real-time image reconstruction
,”
Opt. Express
27
,
35166
35181
(
2019
).
74.
Dmd, at URL: http://www.ti.com/dlp-chip/getting-started.html; accessed March 2021.
75.
S.
Ahmadi Kandjani
,
R.
Kheradmand
, and
N.
Dadashzadeh
, “
Ghost imaging with pseudo-thermal light
,” in
2011 13th International Conference on Transparent Optical Networks
(
IEEE
,
2011
), pp.
1
4
.
76.
Y.
Zhang
,
M. P.
Edgar
,
B.
Sun
,
N.
Radwell
,
G. M.
Gibson
, and
M. J.
Padgett
, “
3D single-pixel video
,”
J. Opt.
18
,
035203
(
2016
).
77.
M.
Wang
,
M.-J.
Sun
, and
C.
Huang
, “
Single-pixel 3D reconstruction via a high-speed LED array
,”
J. Phys.: Photonics
2
,
025006
(
2020
).
78.
Z.
Zhang
,
Z.
Su
,
Q.
Deng
,
J.
Ye
,
J.
Peng
, and
J.
Zhong
, “
Lensless single-pixel imaging by using LCD: Application to small-size and multi-functional scanner
,”
Opt. Express
27
,
3731
3745
(
2019
).
79.
M.
Hestenes
and
E.
Stiefel
, “
Methods of conjugate gradients for solving linear systems
,”
J. Res. Natl. Bur. Stand.
49
,
409
435
(
1952
).
80.
K.
Guo
,
S.
Jiang
, and
G.
Zheng
, “
Multilayer fluorescence imaging on a single-pixel detector
,”
Biomed. Opt. Express
7
,
2425
2431
(
2016
).
81.
L.
Bian
,
J.
Suo
,
J.
Chung
,
X.
Ou
,
C.
Yang
,
F.
Chen
, and
Q.
Dai
, “
Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient
,”
Sci. Rep.
6
,
27384
(
2016
).
82.
H.
Akaike
, “
Information theory and an extension of the maximum likelihood principle
,” in
Selected Papers of Hirotugu Akaike
, edited by
E.
Parzen
,
K.
Tanabe
, and
G.
Kitagawa
(
Springer New York
,
New York
,
1998
), pp.
199
213
.
83.
A.
Yang
,
Z.
Zhou
,
A.
Balasubramanian
,
S.
Sastry
, and
Y.
Ma
, “
Fast l1-minimization algorithms for robust face recognition
,” IEEE Transactions on Image Processing (
IEEE
,
2013
), Vol. 22.
84.
H.
Zhu
,
W.
Chen
, and
Y.
Wu
, “
Efficient implementations for orthogonal matching pursuit
,”
Electronics
9
,
1507
(
2020
).
85.
C. O.
Quero
,
D.
Durini
,
R.
Ramos-Garcia
,
J.
Rangel-Magdaleno
, and
J.
Martinez-Carranza
, “
Hardware parallel architecture proposed to accelerate the orthogonal matching pursuit compressive sensing reconstruction
,”
Proc. SPIE
11396
,
113960N
(
2020
).
86.
S.-H.
Hsieh
,
C.-S.
Lu
, and
S.-C.
Pei
, “
Fast OMP: Reformulating OMP via iteratively refining ℓ2-norm solutions
,” in
2012 IEEE Statistical Signal Processing Workshop (SSP)
(
IEEE
,
2012
), pp.
189
192
.
87.
A.
McCarthy
,
R. J.
Collins
,
N. J.
Krichel
,
V.
Fernández
,
A. M.
Wallace
, and
G. S.
Buller
, “
Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting
,”
Appl. Opt.
48
,
6241
6251
(
2009
).
88.
A.
Velten
,
T.
Willwacher
,
O.
Gupta
,
A.
Veeraraghavan
,
M. G.
Bawendi
, and
R.
Raskar
, “
Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging
,”
Nat. Commun.
3
,
745
(
2012
).
89.
A.
Colaço
,
A.
Kirmani
,
G. A.
Howland
,
J. C.
Howell
, and
V. K.
Goyal
, “
Compressive depth map acquisition using a single photon-counting detector: Parametric signal processing meets sparsity
,” in
2012 IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2012
), pp.
96
102
.
90.
R. J.
Woodham
, “
Photometric method for determining surface orientation from multiple images
,”
Opt. Eng.
19
,
191139
(
1980
).
91.
A.
McCarthy
,
N. J.
Krichel
,
N. R.
Gemmell
,
X.
Ren
,
M. G.
Tanner
,
S. N.
Dorenbos
,
V.
Zwiller
,
R. H.
Hadfield
, and
G. S.
Buller
, “
Kilometre-range, high resolution depth imaging using 1560 nm wavelength single-photon detection
,” in
2013 Conference on Lasers and Electro-Optics–International Quantum Electronics Conference
(
Optical Society of America
,
2013
).
92.
M.-J.
Sun
,
M. P.
Edgar
,
G. M.
Gibson
,
B.
Sun
,
N.
Radwell
,
R.
Lamb
, and
M. J.
Padgett
, “
Single-pixel three-dimensional imaging with time-based depth resolution
,”
Nat. Commun.
7
,
12010
(
2016
).
93.
L.
Gao
,
J.
Liang
,
C.
Li
, and
L. V.
Wang
, “
Single-shot compressed ultrafast photography at one hundred billion frames per second
,”
Nature
516
,
74
(
2014
).
94.
L.
Jin
,
R.
Aimin
, and
Z.
Jingnan
, “
3D reconstruction by perspective shape from shading using linearized triangular element surface model
,” in
2006 International Conference on Mechatronics and Automation
(
IEEE
,
2006
), pp.
1763
1768
.
95.
Laser safety facts, at URL: https://www.lasersafetyfacts.com/laserclasses.html; accessed March 2021.
96.
P.
Caramazza
,
A.
Boccolini
,
D.
Buschek
,
M.
Hullin
,
C. F.
Higham
,
R.
Henderson
,
R.
Murray-Smith
, and
D.
Faccio
, “
Neural network identification of people hidden from view with a single-pixel, single-photon detector
,”
Sci. Rep.
8
,
11945
(
2018
).
97.
R.
Pandharkar
,
A.
Velten
,
A.
Bardagjy
,
E.
Lawson
,
M.
Bawendi
, and
R.
Raskar
, “
Estimating motion and size of moving non-line-of-sight objects in cluttered environments
,” in
CVPR 2011
(
IEEE
,
2011
), pp.
265
272
.
98.
R.
Warburton
,
S.
Chan
,
G.
Gariepy
,
Y.
Altmann
,
S.
McLaughlin
,
J.
Leach
, and
D.
Faccio
, “
Real-time tracking of hidden objects with single-pixel detectors
,” in
Imaging and Applied Optics
(
Optical Society of America
,
2016
), p.
IT4E.2
.
99.
A.
Yuniarti
and
N.
Suciati
, “
A review of deep learning techniques for 3D reconstruction of 2D images
,” in
2019 12th International Conference on Information Communication Technology and System (ICTS)
(
IEEE
,
2019
), pp.
327
331
.
100.
I.
Yasri
, “
An FPGA based hardware accelerator for real time video segmentation system
,” in
2011 International Conference on Advanced Computer Science and Information Systems
(
IEEE
,
2011
), pp.
63
68
.
101.
S.
Bi
,
N.
Xi
,
K. W. C.
Lai
, and
X.
Pan
, “
Design and implementation for image reconstruction of compressivesensing using fpga
,” in
2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems
(
IEEE
,
2013
), pp.
320
325
.
102.
A.
Mase
,
Y.
Quan
,
Y.
Li
,
X.
Gao
, and
M.
Xing
, “
FPGA implementation of real-time compressive sensing with partial Fourier dictionary
,”
Int. J. Antennas Propag.
2016
,
1671687
.
103.
A.
Kulkarni
and
T.
Mohsenin
, “
Accelerating compressive sensing reconstruction OMP algorithm with CPU, GPU, FPGA and domain specific many-core
,” in
2015 IEEE International Symposium on Circuits and Systems (ISCAS)
(
IEEE
,
2015
), pp.
970
973
.
104.
Y.
Fang
,
L.
Chen
,
J.
Wu
, and
B.
Huang
, “
GPU implementation of orthogonal matching pursuit for compressive sensing
,” in
2011 IEEE 17th International Conference on Parallel and Distributed Systems
(
IEEE
,
2011
), pp.
1044
1047
.
105.
C. A.
Osorio Quero
,
D. D.
Romero
,
R.
Ramos-Garcia
,
J.
de Jesus Rangel-Magdaleno
, and
J.
Martinez-Carranza
, “
Towards a 3D vision system based on single-pixel imaging and indirect time-of-flight for drone applications
,” in
2020 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)
(
IEEE
,
2020
), pp.
1
6
.
106.
C. O.
Quero
,
D.
Durini
,
R.
Ramos-Garcia
,
J.
Rangel-Magdaleno
, and
J.
Martinez-Carranza
, “
Evaluation of a 3D imaging vision system based on a single-pixel InGaAs detector and the time-of-flight principle for drones
,”
Proc. SPIE
11402
,
114020T
(
2020
).
107.
G.
Gennarelli
,
F.
Soldovieri
, and
M.
Amin
, “
Radar for indoor surveillance: State of art and perspectives
,”
Proc. SPIE
11059
,
1105903
(
2019
).
108.
S.
Robotics
,
Robotics 2020 multi-annual roadmap for robotics in Europe
, SPARC Robotics, EU-Robotics AISBL, The Hauge, The Netherlands; accessed February 5, 2018,
2016
.
109.
J.
Martinez-Carranza
and
C.
Rascon
, “
A review on auditory perception for unmanned aerial vehicles
,”
Sensors
20
,
7276
(
2020
).
110.
J.
Martínez-Carranza
,
R.
Bostock
,
S.
Willcox
,
I.
Cowling
, and
W.
Mayol-Cuevas
, “
Indoor MAV auto-retrieval using fast 6D relocalisation
,”
Adv. Rob.
30
,
119
130
(
2016
).
111.
A.
Lopez Luna
,
I.
Cruz Vega
, and
J.
Martinez-Carranza
, “
Vertical surface contact with a micro air vehicle
,”
Int. J. Micro Air Veh.
12
, (
2020
).
112.
R.
Parlange
,
J.
Martinez-Carranza
,
L.
Sucar
,
B.
Ren
, and
S.
Watkins
, “
Vision-based autonomous navigation for wind turbine inspection using an unmanned aerial vehicle
,” in
10th International Micro Air Vehicle Conference and Competition
(
IMAV
,
2018
), pp.
283
288
.
113.
H.
Moon
,
J.
Martinez-Carranza
,
T.
Cieslewski
,
M.
Faessler
,
D.
Falanga
,
A.
Simovic
,
D.
Scaramuzza
,
S.
Li
,
M.
Ozo
,
C.
De Wagter
 et al, “
Challenges and implemented technologies used in autonomous drone racing
,”
Intell. Serv. Rob.
12
,
137
148
(
2019
).
114.
S.
Dionisio-Ortega
,
L. O.
Rojas-Perez
,
J.
Martinez-Carranza
, and
I.
Cruz-Vega
, “
A deep learning approach towards autonomous flight in forest environments
,” in
2018 International Conference on Electronics, Communications and Computers (CONIELECOMP)
(
IEEE
,
2018
), pp.
139
144
.
115.
G.
Gallego
,
T.
Delbruck
,
G.
Orchard
,
C.
Bartolozzi
,
B.
Taba
,
A.
Censi
,
S.
Leutenegger
,
A.
Davison
,
J.
Conradt
,
K.
Daniilidis
, and
D.
Scaramuzza
, “
Event-based vision: A survey
,” in IEEE Transactions on Pattern Analysis and Machine Intelligence (
IEEE
,
2020
).
116.
R.
Tobin
,
A.
Halimi
,
A.
McCarthy
,
P. J.
Soan
, and
G. S.
Buller
, “
Robust real-time 3D imaging of moving scenes through atmospheric obscurant using single-photon LiDAR
,”
Sci. Rep.
11
,
11236
(
2021
).
117.
S. D.
Johnson
,
N.
Radwell
,
M. P.
Edgar
,
C.
Higham
,
R.
Murray-Smith
, and
M. J.
Padgett
, “
Single-pixel lidar with deep learning optimised sampling
,” in
Conference on Lasers and Electro-Optics
(
Optical Society of America
,
2020
), p.
ATu3T.5
.
118.
F.
Magalhães
,
M. V.
Correia
,
F.
Farahi
,
J.
Pereira do Carmo
, and
F. M.
Araújo
, “
Cyclops: Single-pixel imaging lidar system based on compressive sensing
,”
Proc. SPIE
10563
,
105633U
(
2017
).
119.
V.
Milanović
,
A.
Kasturi
,
J.
Yang
, and
F.
Hu
, “
A fast single-pixel laser imager for VR/AR headset tracking
,”
Proc. SPIE
10116
,
101160E
(
2017
).
120.
L.
Martínez-León
,
P.
Clemente
,
Y.
Mori
,
V.
Climent
,
J.
Lancis
, and
E.
Tajahuerce
, “
Single-pixel digital holography with phase-encoded illumination
,”
Opt. Express
25
,
4975
4984
(
2017
).
121.
M.
Li
,
A.
Mathai
,
S. L. H.
Lau
,
J. W.
Yam
,
X.
Xu
, and
X.
Wang
, “
Underwater object detection and reconstruction based on active single-pixel imaging and super-resolution convolutional neural network
,”
Sensors
21
,
313
(
2021
).
122.
M.
Le
,
G.
Wang
,
H.
Zheng
,
J.
Liu
,
Y.
Zhou
, and
Z.
Xu
, “
Underwater computational ghost imaging
,”
Opt. Express
25
,
22859
22868
(
2017
).
123.
B.
Fürsich
,
R.
Bamler
,
S.
Augustin
,
H.-W.
Hübers
, and
X. X.
Zhu
, “
Towards single-pixel FMCW radar reconstruction
,” in
2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa)
(
IEEE
,
2016
), pp.
95
99
.
124.
F.
Magalhaes
,
F. M.
Araújo
,
M.
Correia
,
M.
Abolbashari
, and
F.
Farahi
, “
High-resolution hyperspectral single-pixel imaging system based on compressive sensing
,”
Opt. Eng.
51
,
071406
(
2012
).
125.
C.
Tao
,
H.
Zhu
,
X.
Wang
,
S.
Zheng
,
Q.
Xie
,
C.
Wang
,
R.
Wu
, and
Z.
Zheng
, “
Compressive single-pixel hyperspectral imaging using RGB sensors
,”
Opt. Express
29
,
11207
11220
(
2021
).
126.
S.
Jin
,
W.
Hui
,
Y.
Wang
,
K.
Huang
,
Q.
Shi
,
C.
Ying
,
D.
Liu
,
Q.
Ye
,
W.
Zhou
, and
J.
Tian
, “
Hyperspectral imaging using the single-pixel Fourier transform technique
,”
Sci. Rep.
7
,
45209
(
2017
).
127.
C.
Lastri
,
V.
Guzzi Nardino
,
L.
Palombi
, and
V.
Raimondi
, “
Exploring the potential of compressive sensing and super-resolution for space applications in the MIR-TIR
,”
Proceedings
27
,
35
(
2019
).
128.
J.
Angelo
,
S.-J.
Chen
,
M.
Ochoa Mendoza
,
U.
Sunar
,
S.
Gioux
, and
X.
Intes
, “
Review of structured light in diffuse optical imaging
,”
J. Biomed. Opt.
24
,
071602
(
2018
).
You do not currently have access to this content.