A calibration routine is presented for an array of retarding field energy analyzer (RFEA) sensors distributed across a planar electrode surface with a diameter of 450 mm that is exposed to a low temperature plasma. Such an array is used to measure the ion velocity distribution function at the electrode with radial and azimuthal resolutions as a basis for knowledge-based plasma process development. The presented calibration procedure is tested by exposing such an RFEA array to a large-area capacitively coupled argon plasma driven by two frequencies (13.56 and 27.12 MHz) at a gas pressure of 0.5 Pa. Up to 12 sensors are calibrated with respect to the 13th sensor, called the global reference sensor, by systematically varying the sensor positions across the array. The results show that the uncalibrated radial and azimuthal ion flux profiles are incorrect. The obtained profiles are different depending on the sensor arrangement and exhibit different radial and azimuthal behaviors. Based on the proposed calibration routine, the ion flux profiles can be corrected and a meaningful interpretation of the measured data is possible. The calibration factors are almost independent of the external process parameters, namely, input power, gas pressure, and gas mixture, investigated under large-area single-frequency capacitively coupled plasma conditions (27.12 MHz). Thus, mean calibration factors are determined based on 45 different process conditions and can be used independent of the plasma conditions. The temporal stability of the calibration factors is found to be limited, i.e., the calibration must be repeated periodically.

1.
S. J.
Nadel
,
P.
Greene
,
J.
Rietzel
, and
J.
Strümpfel
, “
Equipment, materials and processes: A review of high rate sputtering technology for glass coating
,”
Thin Solid Films
442
,
11
14
(
2003
).
2.
L.
Sansonnens
,
A.
Pletzer
,
D.
Magni
,
A. A.
Howling
,
C.
Hollenstein
, and
J. P. M.
Schmitt
, “
A voltage uniformity study in large-area reactors for RF plasma deposition
,”
Plasma Sources Sci. Technol.
6
,
170
178
(
1997
).
3.
F.
Villa
,
A.
Martínez
, and
L. E.
Regalado
, “
Correction masks for thickness uniformity in large-area thin films
,”
Appl. Opt.
39
,
1602
(
2000
).
4.
A. A.
Howling
,
L.
Sansonnens
,
J.
Ballutaud
,
C.
Hollenstein
, and
J. P. M.
Schmitt
, “
Nonuniform radio-frequency plasma potential due to edge asymmetry in large-area radio-frequency reactors
,”
J. Appl. Phys.
96
,
5429
5440
(
2004
).
5.
A.
Perrin
and
J.-P.
Gailliard
, “
Planetary system for high-uniformity deposited layers on large substrates
,”
Proc. SPIE
1782
,
238
(
1992
).
6.
A.
Anders
, “
Plasma and ion sources in large area coating: A review
,”
Surf. Coat. Technol.
200
,
1893
1906
(
2005
).
7.
H.
Curtins
,
N.
Wyrsch
,
M.
Favre
, and
A. V.
Shah
, “
Influence of plasma excitation frequency for a-Si:H thin film deposition
,”
Plasma Chem. Plasma Process.
7
,
267
273
(
1987
).
8.
K.
Satake
,
H.
Yamakoshi
, and
M.
Noda
, “
Experimental and numerical studies on voltage distribution in capacitively coupled very high-frequency plasmas
,”
Plasma Sources Sci. Technol.
13
,
436
445
(
2004
).
9.
C.
Corbella
, “
Upscaling plasma deposition: The influence of technological parameters
,”
Surf. Coat. Technol.
242
,
237
245
(
2014
).
10.
C.
Pascal
and
N.
Braithwaite
,
Physics of Radio-Frequency Plasmas
(
Cambridge University Press
,
2011
), ISBN: 9780521763004.
11.
A.
Perret
,
P.
Chabert
,
J.-P.
Booth
,
J.
Jolly
,
J.
Guillon
, and
P.
Auvray
, “
Ion flux nonuniformities in large-area high-frequency capacitive discharges
,”
Appl. Phys. Lett.
83
,
243
245
(
2003
).
12.
A.
Perret
,
P.
Chabert
,
J.
Jolly
, and
J.-P.
Booth
, “
Ion energy uniformity in high-frequency capacitive discharges
,”
Appl. Phys. Lett.
86
,
021501
(
2005
).
13.
E.
Schüngel
,
S.
Mohr
,
J.
Schulze
, and
U.
Czarnetzki
, “
Prevention of ion flux lateral inhomogeneities in large area capacitive radio frequency plasmas via the electrical asymmetry effect
,”
Appl. Phys. Lett.
106
,
054108
(
2015
).
14.
Y.-X.
Liu
,
Y.-R.
Zhang
,
A.
Bogaerts
, and
Y.-N.
Wang
, “
Electromagnetic effects in high-frequency large-area capacitive discharges: A review
,”
J. Vac. Sci. Technol. A
33
,
020801
(
2015
).
15.
K.
Zhao
,
Z.-X.
Su
,
J.-R.
Liu
,
Y.-X.
Liu
,
Y.-R.
Zhang
,
J.
Schulze
,
Y.-H.
Song
, and
Y.-N.
Wang
, “
Suppression of nonlinear standing wave excitation via the electrical asymmetry effect
,”
Plasma Sources Sci. Technol.
29
,
124001
(
2020
).
16.
Y.-R.
Zhang
,
Y.-T.
Hu
,
F.
Gao
,
Y.-H.
Song
, and
Y.-N.
Wang
, “
Plasma characteristics in an electrically asymmetric capacitive discharge sustained by multiple harmonics: Operating in the very high frequency regime
,”
Plasma Sources Sci. Technol.
27
,
055003
(
2018
).
17.
B. G.
Heil
,
U.
Czarnetzki
,
R. P.
Brinkmann
, and
T.
Mussenbrock
, “
On the possibility of making a geometrically symmetric RF-CCP discharge electrically asymmetric
,”
J. Phys. D: Appl. Phys.
41
,
165202
(
2008
).
18.
J.
Schulze
,
E.
Schüngel
, and
U.
Czarnetzki
, “
The electrical asymmetry effect in capacitively coupled radio frequency discharges–measurements of DC self bias, ion energy and ion flux
,”
J. Phys. D: Appl. Phys.
42
,
092005
(
2009
).
19.
F. L.
Buzzi
,
Y.-H.
Ting
, and
A. E.
Wendt
, “
Energy distribution of bombarding ions in plasma etching of dielectrics
,”
Plasma Sources Sci. Technol.
18
,
025009
(
2009
).
20.
J.
Schulze
,
E.
Schüngel
,
Z.
Donkó
, and
U.
Czarnetzki
, “
Excitation dynamics in electrically asymmetric capacitively coupled radio frequency discharges: Experiment, simulation, and model
,”
Plasma Sources Sci. Technol.
19
,
045028
(
2010
).
21.
J.
Schulze
,
E.
Schüngel
,
Z.
Donkó
, and
U.
Czarnetzki
, “
The electrical asymmetry effect in multi-frequency capacitively coupled radio frequency discharges
,”
Plasma Sources Sci. Technol.
20
,
015017
(
2011
).
22.
S.
Brandt
,
B.
Berger
,
E.
Schüngel
,
I.
Korolov
,
A.
Derzsi
,
B.
Bruneau
,
E.
Johnson
,
T.
Lafleur
,
D.
O’Connell
,
M.
Koepke
,
T.
Gans
,
J.-P.
Booth
,
Z.
Donkó
, and
J.
Schulze
, “
Electron power absorption dynamics in capacitive radio frequency discharges driven by tailored voltage waveforms in CF4
,”
Plasma Sources Sci. Technol.
25
,
045015
(
2016
).
23.
B.
Bruneau
,
T.
Lafleur
,
J.-P.
Booth
, and
E.
Johnson
, “
Controlling the shape of the ion energy distribution at constant ion flux and constant mean ion energy with tailored voltage waveforms
,”
Plasma Sources Sci. Technol.
25
,
025006
(
2016
).
24.
F.
Krüger
,
S.
Wilczek
,
T.
Mussenbrock
, and
J.
Schulze
, “
Voltage waveform tailoring in radio frequency plasmas for surface charge neutralization inside etch trenches
,”
Plasma Sources Sci. Technol.
28
,
075017
(
2019
).
25.
T.
Baloniak
,
R.
Reuter
,
A. C.
Flötgen
, and
A.
von Keudell
, “
Calibration of a miniaturized retarding field analyzer for low-temperature plasmas: Geometrical transparency and collisional effects
,”
J. Phys. D: Appl. Phys.
43
,
055203
(
2010
).
26.
D.
Gahan
,
B.
Dolinaj
, and
M. B.
Hopkins
, “
Retarding field analyzer for ion energy distribution measurements at a radio-frequency biased electrode
,”
Rev. Sci. Instrum.
79
,
033502
(
2008
).
27.
T. H. M.
van de Ven
,
C. A.
de Meijere
,
R. M.
van der Horst
,
M.
van Kampen
,
V. Y.
Banine
, and
J.
Beckers
, “
Analysis of retarding field energy analyzer transmission by simulation of ion trajectories
,”
Rev. Sci. Instrum.
89
,
043501
(
2018
).
28.
K.
Denieffe
,
C. M. O.
Mahony
,
P. D.
Maguire
,
D.
Gahan
, and
M. B.
Hopkins
, “
Retarding field energy analyser ion current calibration and transmission
,”
J. Phys. D: Appl. Phys.
44
,
075205
(
2011
).
29.
S.
Ries
,
L.
Banko
,
M.
Hans
,
D.
Primetzhofer
,
J. M.
Schneider
,
A.
Ludwig
,
P.
Awakowicz
, and
J.
Schulze
, “
Ion energy control via the electrical asymmetry effect to tune coating properties in reactive radio frequency sputtering
,”
Plasma Sources Sci. Technol.
28
,
114001
(
2019
).
30.
S. G.
Ingram
and
N. S. J.
Braithwaite
, “
Ion and electron energy analysis at a surface in an RF discharge
,”
J. Phys. D: Appl. Phys.
21
,
1496
1503
(
1988
).
31.
C.
Böhm
and
J.
Perrin
, “
Retarding-field analyzer for measurements of ion energy distributions and secondary electron emission coefficients in low-pressure radio frequency discharges
,”
Rev. Sci. Instrum.
64
,
31
44
(
1993
).
32.
S.
Sharma
,
D.
Gahan
,
S.
Kechkar
,
S.
Daniels
, and
M. B.
Hopkins
, “
A spatially resolved retarding field energy analyzer design suitable for uniformity analysis across the surface of a semiconductor wafer
,”
Rev. Sci. Instrum.
85
,
043509
(
2014
).
33.
S.
Ries
, Ph.D. thesis,
Ruhr-Universität Bochum
,
2020
.
34.
A. W.
Molvik
, “
Large acceptance angle retarding-potential analyzers
,”
Rev. Sci. Instrum.
52
,
704
711
(
1981
).
35.
A. V.
Phelps
and
Z. Lj.
Petrovic
, “
Cold-cathode discharges and breakdown in argon: Surface and gas phase production of secondary electrons
,”
Plasma Sources Sci. Technol.
8
,
R21
R44
(
1999
).
36.
M.
Daksha
,
A.
Derzsi
,
Z.
Mujahid
,
D.
Schulenberg
,
B.
Berger
,
Z.
Donkó
, and
J.
Schulze
, “
Material dependent modeling of secondary electron emission coefficients and its effects on PIC/MCC simulation results of capacitive RF plasmas
,”
Plasma Sources Sci. Technol.
28
,
034002
(
2019
).
37.
M. A.
Lieberman
, “
The Langmuir isotherm and the standard model of ion-assisted etching
,”
Plasma Sources Sci. Technol.
18
,
014002
(
2008
).
38.
S.
Mahieu
,
K.
Van Aeken
,
D.
Depla
,
D.
Smeets
, and
A.
Vantomme
, “
Dependence of the sticking coefficient of sputtered atoms on the target–substrate distance
,”
J. Phys. D: Appl. Phys.
41
,
152005
(
2008
).
39.
B.
Horváth
,
J.
Schulze
,
Z.
Donkó
, and
A.
Derzsi
, “
The effect of electron induced secondary electrons on the characteristics of low-pressure capacitively coupled radio frequency plasmas
,”
J. Phys. D: Appl. Phys.
51
,
355204
(
2018
).
40.
I.
Korolov
,
A.
Derzsi
,
Z.
Donkó
,
E.
Schüngel
, and
J.
Schulze
, “
The influence of electron reflection/sticking coefficients at the electrodes on plasma parameters in particle-in-cell simulations of capacitive radio-frequency plasmas
,”
Plasma Sources Sci. Technol.
25
,
015024
(
2016
).
41.
M.
Daksha
,
A.
Derzsi
,
S.
Wilczek
,
J.
Trieschmann
,
T.
Mussenbrock
,
P.
Awakowicz
,
Z.
Donkó
, and
J.
Schulze
, “
The effect of realistic heavy particle induced secondary electron emission coefficients on the electron power absorption dynamics in single- and dual-frequency capacitively coupled plasmas
,”
Plasma Sources Sci. Technol.
26
,
085006
(
2017
).
42.
P.
Belenguer
and
J. P.
Boeuf
, “
Transition between different regimes of RF glow discharges
,”
Phys. Rev. A
41
,
4447
4459
(
1990
).
43.
M. D.
Campanell
,
A. V.
Khrabrov
, and
I. D.
Kaganovich
, “
Absence of debye sheaths due to secondary electron emission
,”
Phys. Rev. Lett.
108
,
255001
(
2012
).
44.
M. D.
Campanell
and
M. V.
Umansky
, “
Strongly emitting surfaces unable to float below plasma potential
,”
Phys. Rev. Lett.
116
,
085003
(
2016
).
45.
S. F.
Adams
,
V. I.
Demidov
,
A. A.
Kudryavtsev
,
I. P.
Kurlyandskaya
,
J. A.
Miles
, and
B. A.
Tolson
, “
Effect of anode material on the breakdown in low-pressure helium gas
,”
J. Phys.: Conf. Ser.
927
,
012001
(
2017
).
46.
S.
Bienholz
,
N.
Bibinov
, and
P.
Awakowicz
, “
Multiple frequency capacitively coupled plasmas as a new technology for sputter processes
,”
J. Phys. D: Appl. Phys.
46
,
084010
(
2013
).
47.
S.
Bienholz
,
T.
Styrnoll
, and
P.
Awakowicz
, “
On the electrical asymmetry effect in large area multiple frequency capacitively coupled plasmas
,”
J. Phys. D: Appl. Phys.
47
,
065201
(
2014
).
48.
D.
Gahan
,
S.
Daniels
,
C.
Hayden
,
D. O.
Sullivan
, and
M. B.
Hopkins
, “
Characterization of an asymmetric parallel plate radio-frequency discharge using a retarding field energy analyzer
,”
Plasma Sources Sci. Technol.
21
,
015002
(
2011
).
49.
P. C.
Boyle
,
A. R.
Ellingboe
, and
M. M.
Turner
, “
Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices
,”
J. Phys. D: Appl. Phys.
37
,
697
701
(
2004
).
50.
D. J.
Coumou
,
D. H.
Clark
,
T.
Kummerer
,
M.
Hopkins
,
D.
Sullivan
, and
S.
Shannon
, “
Ion energy distribution skew control using phase-locked harmonic RF bias drive
,”
IEEE Trans. Plasma Sci.
42
,
1880
1893
(
2014
).
51.
E.
Kawamura
,
V.
Vahedi
,
M. A.
Lieberman
, and
C. K.
Birdsall
, “
Ion energy distributions in RF sheaths: Review, analysis and simulation
,”
Plasma Sources Sci. Technol.
8
,
R45
(
1999
).
52.
D.
Sung
,
V.
Volynets
,
W.
Hwang
,
Y.
Sung
,
S.
Lee
,
M.
Choi
, and
G.-H.
Kim
, “
Frequency and electrode shape effects on etch rate uniformity in a dual-frequency capacitive reactor
,”
J. Vac. Sci. Technol. A
30
,
061301
(
2012
).
53.
Y.
Zhang
,
A.
Zafar
,
D. J.
Coumou
,
S. C.
Shannon
, and
M. J.
Kushner
, “
Control of ion energy distributions using phase shifting in multi-frequency capacitively coupled plasmas
,”
J. Appl. Phys.
117
,
233302
(
2015
).
You do not currently have access to this content.