Exploring the corresponding relation between structural and physical properties of materials at the atomic scale remains the fundamental problem in science. With the development of the aberration-corrected transmission electron microscopy (AC-TEM) and the ultrafast optical spectroscopy technique, sub-angstrom-scale spatial resolution and femtosecond-scale temporal resolution can be achieved, respectively. However, the attempt to combine both their advantages is still a great challenge. Here, we develop in situ optical spectroscopy with high temporal resolution in AC-TEM by utilizing a self-designed and manufactured TEM specimen holder, which has the capacity of sub-angstrom-scale spatial resolution and femtosecond-scale temporal resolution. The key and unique design of our apparatus is the use of the fiber bundle, which enables the delivery of focused pulse beams into TEM and collection of optical response simultaneously. The generated focused spot has a size less than 2 µm and can be scanned in plane with an area larger than 75 × 75 µm2. Most importantly, the positive group-velocity dispersion caused by glass fiber is compensated by a pair of diffraction gratings, thus resulting in the generation of pulse beams with a pulse width of about 300 fs (@ 3 mW) in TEM. The in situ experiment, observing the atomic structure of CdSe/ZnS quantum dots in AC-TEM and obtaining the photoluminescence lifetime (∼4.3 ns) in the meantime, has been realized. Further ultrafast optical spectroscopy with femtosecond-scale temporal resolution could be performed in TEM by utilizing this apparatus.

1.
E.
Ruska
, “
The development of the electron-microscope and of electron-microscopy
,”
Rev. Mod. Phys.
59
,
627
638
(
1987
).
2.
Z. L.
Wang
, “
New developments in transmission electron microscopy for nanotechnology
,”
Adv. Mater.
15
,
1497
1514
(
2003
).
3.
D. B.
Williams
and
C. B.
Carter
,
Transmission Electron Microscopy: A Textbook for Materials Science
(
Springer US
,
2009
).
4.
R. F.
Egerton
,
Electron Energy-Loss Spectroscopy in the Electron Microscope
(
Springer US
,
2011
).
5.
L. J.
Allen
,
S. D.
Findlay
,
A. R.
Lupini
,
M. P.
Oxley
, and
S. J.
Pennycook
, “
Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy
,”
Phys. Rev. Lett.
91
,
105503
(
2003
).
6.
P. E.
Batson
,
N.
Dellby
, and
O. L.
Krivanek
, “
Sub-ångstrom resolution using aberration corrected electron optics
,”
Nature
418
,
617
620
(
2002
).
7.
A. Y.
Borisevich
,
A. R.
Lupini
, and
S. J.
Pennycook
, “
Depth sectioning with the aberration-corrected scanning transmission electron microscope
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
3044
3048
(
2006
).
8.
N.
Dellby
,
O. L.
Krivanek
,
P. D.
Nellist
,
P. E.
Batson
, and
A. R.
Lupini
, “
Progress in aberration-corrected scanning transmission electron microscopy
,”
J. Electron Microsc.
50
,
177
185
(
2001
).
9.
M.
Haider
,
H.
Rose
,
S.
Uhlemann
,
E.
Schwan
,
B.
Kabius
, and
K.
Urban
, “
A spherical-aberration-corrected 200 kV transmission electron microscope
,”
Ultramicroscopy
75
,
53
60
(
1998
).
10.
M.
Haider
,
S.
Uhlemann
, and
J.
Zach
, “
Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM
,”
Ultramicroscopy
81
,
163
175
(
2000
).
11.
C.-L.
Jia
,
M.
Lentzen
, and
K.
Urban
, “
High-resolution transmission electron microscopy using negative spherical aberration
,”
Microsc. Microanal.
10
,
174
184
(
2004
).
12.
M.
Lentzen
,
B.
Jahnen
,
C. L.
Jia
,
A.
Thust
,
K.
Tillmann
, and
K.
Urban
, “
High-resolution imaging with an aberration-corrected transmission electron microscope
,”
Ultramicroscopy
92
,
233
242
(
2002
).
13.
S. J.
Pennycook
,
B.
Rafferty
, and
P. D.
Nellist
, “
Z-contrast imaging in an aberration-corrected scanning transmission electron microscope
,”
Microsc. Microanal.
6
,
343
352
(
2000
).
14.
D. J.
Smith
, “
Development of aberration-corrected electron microscopy
,”
Microsc. Microanal.
14
,
2
15
(
2008
).
15.
S.
Uhlemann
and
M.
Haider
, “
Residual wave aberrations in the first spherical aberration corrected transmission electron microscope
,”
Ultramicroscopy
72
,
109
119
(
1998
).
16.
K. W.
Urban
, “
Studying atomic structures by aberration-corrected transmission electron microscopy
,”
Science
321
,
506
510
(
2008
).
17.
M.
Varela
,
A. R.
Lupini
,
K.
van Benthem
,
A. Y.
Borisevich
,
M. F.
Chisholm
,
N.
Shibata
,
E.
Abe
, and
S. J.
Pennycook
, “
Materials characterization in the aberration-corrected scanning transmission electron microscope
,”
Annu. Rev. Mater. Res.
35
,
539
569
(
2005
).
18.
P. W.
Hawkes
and
J. C. H.
Spence
,
Science of Microscopy
(
Springer
,
New York
,
2008
).
19.
M. L.
Taheri
,
E. A.
Stach
,
I.
Arslan
,
P. A.
Crozier
,
B. C.
Kabius
,
T.
LaGrange
,
A. M.
Minor
,
S.
Takeda
,
M.
Tanase
,
J. B.
Wagner
, and
R.
Sharma
, “
Current status and future directions for in situ transmission electron microscopy
,”
Ultramicroscopy
170
,
86
95
(
2016
).
20.
P.
Chen
,
X.
Zhong
,
J. A.
Zorn
,
M.
Li
,
Y.
Sun
,
A. Y.
Abid
,
C.
Ren
,
Y.
Li
,
X.
Li
,
X.
Ma
,
J.
Wang
,
K.
Liu
,
Z.
Xu
,
C.
Tan
,
L.
Chen
,
P.
Gao
, and
X.
Bai
, “
Atomic imaging of mechanically induced topological transition of ferroelectric vortices
,”
Nat. Commun.
11
,
1840
(
2020
).
21.
X.
Li
,
C.
Tan
,
C.
Liu
,
P.
Gao
,
Y.
Sun
,
P.
Chen
,
M.
Li
,
L.
Liao
,
R.
Zhu
,
J.
Wang
,
Y.
Zhao
,
L.
Wang
,
Z.
Xu
,
K.
Liu
,
X.
Zhong
,
J.
Wang
, and
X.
Bai
, “
Atomic-scale observations of electrical and mechanical manipulation of topological polar flux closure
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
18954
18961
(
2020
).
22.
L.
Zhu
,
S.
Chen
,
H.
Zhang
,
J.
Zhang
,
Y.
Sun
,
X.
Li
,
Z.
Xu
,
L.
Wang
,
J.
Sun
,
P.
Gao
,
W.
Wang
, and
X.
Bai
, “
Strain-inhibited electromigration of oxygen vacancies in LaCoO3
,”
ACS Appl. Mater. Interfaces
11
,
36800
36806
(
2019
).
23.
T.
Ohmura
,
A. M.
Minor
,
E. A.
Stach
, and
J. W.
Morris
, “
Dislocation-grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope
,”
J. Mater. Res.
19
,
3626
3632
(
2004
).
24.
J.
Sun
,
L.
He
,
Y.-C.
Lo
,
T.
Xu
,
H.
Bi
,
L.
Sun
,
Z.
Zhang
,
S. X.
Mao
, and
J.
Li
, “
Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles
,”
Nat. Mater.
13
,
1007
1012
(
2014
).
25.
Q.
Yu
,
M.
Legros
, and
A. M.
Minor
, “
In situ TEM nanomechanics
,”
MRS Bull.
40
,
62
68
(
2015
).
26.
P.
Gao
,
Z.
Kang
,
W.
Fu
,
W.
Wang
,
X.
Bai
, and
E.
Wang
, “
Electrically driven redox process in cerium oxides
,”
J. Am. Chem. Soc.
132
,
4197
4201
(
2010
).
27.
J. Y.
Huang
,
L.
Zhong
,
C. M.
Wang
,
J. P.
Sullivan
,
W.
Xu
,
L. Q.
Zhang
,
S. X.
Mao
,
N. S.
Hudak
,
X. H.
Liu
,
A.
Subramanian
,
H.
Fan
,
L.
Qi
,
A.
Kushima
, and
J.
Li
, “
In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode
,”
Science
330
,
1515
1520
(
2010
).
28.
L.
Wang
,
Z.
Xu
,
W.
Wang
, and
X.
Bai
, “
Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets
,”
J. Am. Chem. Soc.
136
,
6693
6697
(
2014
).
29.
M.
Sun
,
J.
Wei
,
Z.
Xu
,
Q.
Huang
,
Y.
Zhao
,
W.
Wang
, and
X.
Bai
, “
Electrochemical solid-state amorphization in the immiscible Cu-Li system
,”
Sci. Bull.
63
,
1208
1214
(
2018
).
30.
J.
Wang
,
M.
Sun
,
Y.
Liu
,
J.
Lin
,
L.
Wang
,
Z.
Xu
,
W.
Wang
,
Z.
Yuan
,
J.
Liu
, and
X.
Bai
, “
Unraveling nanoscale electrochemical dynamics of graphite fluoride by in situ electron microscopy: Key difference between lithiation and sodiation
,”
J. Mater. Chem. A
8
,
6105
6111
(
2020
).
31.
S. K.
Eswaramoorthy
,
J. M.
Howe
, and
G.
Muralidharan
, “
In situ determination of the nanoscale chemistry and behavior of solid-liquid systems
,”
Science
318
,
1437
1440
(
2007
).
32.
S. H.
Oh
,
Y.
Kauffmann
,
C.
Scheu
,
W. D.
Kaplan
, and
M.
Ruhle
, “
Ordered liquid aluminum at the interface with sapphire
,”
Science
310
,
661
663
(
2005
).
33.
K.
Suzuki
,
M.
Ichihara
,
S.
Takeuchi
,
K.
Nakagawa
,
K.
Maeda
, and
H.
Iwanaga
, “
In situ TEM observation of dislocation-motion in II–VI compounds
,”
Philos. Mag. A
49
,
451
461
(
1984
).
34.
Y.
Ohno
and
S.
Takeda
, “
A new apparatus for in-situ photoluminescence spectroscopy transmission electron-microscope
,”
Rev. Sci. Instrum.
66
,
4866
4869
(
1995
).
35.
Y.
Ohno
,
T.
Taishi
, and
I.
Yonenaga
, “
In situ analysis of optoelectronic properties of dislocations in ZnO in TEM observations
,”
Phys. Status Solidi A
206
,
1904
1911
(
2009
).
36.
Y.
Ohno
, “
Development of an apparatus for in-situ near-field photoexcitation in a transmission electron microscope
,”
Appl. Phys. Express
5
,
125204
(
2012
).
37.
M.
Picher
,
S.
Mazzucco
,
S.
Blankenship
, and
R.
Sharma
, “
Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy
,”
Ultramicroscopy
150
,
10
15
(
2015
).
38.
F. I.
Allen
,
E.
Kim
,
N. C.
Andresen
,
C. P.
Grigoropoulos
, and
A. M.
Minor
, “
In situ TEM Raman spectroscopy and laser-based materials modification
,”
Ultramicroscopy
178
,
33
37
(
2017
).
39.
H.
Dong
,
F.
Xu
,
Z.
Sun
,
X.
Wu
,
Q.
Zhang
,
Y.
Zhai
,
X. D.
Tan
,
L.
He
,
T.
Xu
,
Z.
Zhang
,
X.
Duan
, and
L.
Sun
, “
In situ interface engineering for probing the limit of quantum dot photovoltaic devices
,”
Nat. Nanotechnol.
14
,
950
956
(
2019
).
40.
J. F. S.
Fernando
,
C.
Zhang
,
K. L.
Firestein
, and
D.
Golberg
, “
Optical and optoelectronic property analysis of nanomaterials inside transmission electron microscope
,”
Small
13
,
1701564
(
2017
).
41.
M.
Gajdardziska-Josifovska
,
V.
Lazarov
,
J.
Reynolds
, and
V. V.
Yakovlev
, “
Wavelength dependence of laser-induced phase transformations in semiconductor quantum dots
,”
Appl. Phys. Lett.
78
,
3298
3300
(
2001
).
42.
P.
Gao
,
Z. Z.
Wang
,
K. H.
Liu
,
Z.
Xu
,
W. L.
Wang
,
X. D.
Bai
, and
E. G.
Wang
, “
Photoconducting response on bending of individual ZnO nanowires
,”
J. Mater. Chem.
19
,
1002
1005
(
2009
).
43.
B.
Xiang
,
D. J.
Hwang
,
J. B.
In
,
S.-G.
Ryu
,
J.-H.
Yoo
,
O.
Dubon
,
A. M.
Minor
, and
C. P.
Grigoropoulos
, “
In situ TEM near-field optical probing of nanoscale silicon crystallization
,”
Nano Lett.
12
,
2524
2529
(
2012
).
44.
V. V.
Yakovlev
,
V.
Lazarov
,
J.
Reynolds
, and
M.
Gajdardziska-Josifovska
, “
Laser-induced phase transformations in semiconductor quantum dots
,”
Appl. Phys. Lett.
76
,
2050
2052
(
2000
).
45.
F.
Cavalca
,
A. B.
Laursen
,
B. E.
Kardynal
,
R. E.
Dunin-Borkowski
,
S.
Dahl
,
J. B.
Wagner
, and
T. W.
Hansen
, “
In situ transmission electron microscopy of light-induced photocatalytic reactions
,”
Nanotechnology
23
,
075705
(
2012
).
46.
B. K.
Miller
and
P. A.
Crozier
, “
System for in situ UV-visible illumination of environmental transmission electron microscopy samples
,”
Microsc. Microanal.
19
,
461
469
(
2013
).
47.
J.
Shah
,
Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures
(
Springer, Berlin Heidelberg
,
2013
).
48.
N. B.
Abraham
,
F. T.
Arecchi
,
A.
Mooradian
, and
A.
Sona
,
Physics of New Laser Sources
(
Springer US
,
2013
).
49.
W.
Göbel
,
J. N. D.
Kerr
,
A.
Nimmerjahn
, and
F.
Helmchen
, “
Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective
,”
Opt. Lett.
29
,
2521
2523
(
2004
).
50.
F.
Helmchen
,
D. W.
Tank
, and
W.
Denk
, “
Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core
,”
Appl. Opt.
41
,
2930
2934
(
2002
).
51.
H.
Nakatsuka
and
D.
Grischkowsky
, “
Recompression of optical pulses broadened by passage through optical fibers
,”
Opt. Lett.
6
,
13
15
(
1981
).
52.
H.
Nakatsuka
,
D.
Grischkowsky
, and
A. C.
Balant
, “
Non-linear picosecond-pulse propagation through optical fibers with positive group-velocity dispersion
,”
Phys. Rev. Lett.
47
,
910
913
(
1981
).
53.
B.
Nikolaus
and
D.
Grischkowsky
, “
12× pulse-compression using optical fibers
,”
Appl. Phys. Lett.
42
,
1
2
(
1983
).
54.
H. G.
Winful
, “
Pulse-compression in optical fiber filters
,”
Appl. Phys. Lett.
46
,
527
529
(
1985
).
55.
C. V.
Shank
,
R. L.
Fork
,
R.
Yen
,
R. H.
Stolen
, and
W. J.
Tomlinson
, “
Compression of femtosecond optical pulses
,”
Appl. Phys. Lett.
40
,
761
763
(
1982
).
56.
E.
Treacy
, “
Optical pulse compression with diffraction gratings
,”
IEEE J. Quantum Electron.
5
,
454
458
(
1969
).
You do not currently have access to this content.