An ongoing objective in the ion cyclotron range of frequencies (ICRF) systems is the improvement of power coupling to the plasma. During the last decade, this goal has been mainly pursued through the study of the coupling resistance, either by optimizing the antenna layout or by tailoring the scrape-off layer profile with gas puffing. Another approach is to increase the voltage handling capability of the ICRF system, limited by breakdown in the launchers or in the transmission lines. This paper describes the design of the ICRF Breakdown EXperiment (IBEX), a device to investigate fundamental aspects of radio frequency arcs under ICRF-relevant conditions. IBEX can achieve a peak voltage of 48 kV at 54 MHz with a 5 kW input power.

1.
J.-M.
Noterdaeme
,
A.
Messiaen
,
R.
Ragona
,
W.
Zhang
,
A.
Bader
,
F.
Durodié
,
U.
Fischer
,
T.
Franke
,
E.
Smigelskis
,
J.
Ongena
,
M. Q.
Tran
,
D.
Van Eester
, and
M.
Van Schoor
, “
Progress on an ion cyclotron range of frequency system for DEMO
,”
Fusion Eng. Des.
146
,
1321
1324
(
2019
), part of the Special Issue: SI:SOFT-30.
2.
F.
Durodié
,
M.
Vrancken
,
R.
Bamber
,
L.
Colas
,
P.
Dumortier
,
D.
Hancock
,
S.
Huygen
,
D.
Lockley
,
F.
Louche
,
R.
Maggiora
,
D.
Milanesio
,
A.
Messiaen
,
M. P. S.
Nightingale
,
M.
Shannon
,
P.
Tigwell
,
M.
Van Schoor
,
D.
Wilson
,
K.
Winkler
, and
C.
Team
, “
Performance assessment of the ITER ICRF antenna
,”
AIP Conf. Proc.
1580
,
362
365
(
2014
).
3.
G.
Federici
, “
Plasma wall interactions in ITER
,”
Phys. Scr.
2006
(
T124
),
1
8
.
4.
V.
Bobkov
,
J.-M.
Noterdaeme
,
F.
Wesner
,
R.
Wilhelm
, and
ASDEX Upgrade Team
, “
Influence of the plasma on ICRF antenna voltage limits
,”
J. Nucl. Mater.
313-316
,
956
961
(
2003
), part of the Special Issue: Plasma-Surface Interactions in Controlled Fusion Devices 15.
5.
R.
Latham
,
High Voltage Vacuum Insulation: Basic Concepts and Technological Practice
(
Elsevier Science
,
1995
).
6.
V.
Rohde
,
M.
Balden
,
T.
Lunt
, and
ASDEX Upgrade Team
, “
Dust investigations at ASDEX upgrade
,”
Phys. Scr.
2009
(
T138
),
014024
.
7.
M.
Balden
,
N.
Endstrasser
,
P. W.
Humrickhouse
,
V.
Rohde
,
M.
Rasinski
,
U.
von Toussaint
,
S.
Elgeti
, and
R.
Neu
, “
Collection strategy, inner morphology, and size distribution of dust particles in ASDEX upgrade
,”
Nucl. Fusion
54
,
073010
(
2014
).
8.
A.
Autricque
, “
Dust transport in tokamaks
,” Ph.D. thesis,
Aix-Marseille
,
2018
.
9.
R.
Smirnov
,
S.
Krasheninnikov
,
A.
Pigarov
,
D.
Benson
,
M.
Rosenberg
, and
D.
Mendis
, “
Modeling of velocity distributions of dust in tokamak edge plasmas and dust–wall collisions
,”
J. Nucl. Mater.
390-391
,
84
87
(
2009
), part of the Special Issue: Proceedings of the 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Device.
10.
F.
Höhn
,
W.
Jacob
,
R.
Beckmann
, and
R.
Wilhelm
, “
The transition of a multipactor to a low-pressure gas discharge
,”
Phys. Plasmas
4
,
940
944
(
1997
).
11.
M.
Margraf
, Qucsstudio—A free and powerful circuit simulator.
12.
F.
Brochard
,
V.
Rohde
,
T.
Lunt
,
G.
Suárez López
,
A.
Shalpegin
, and
R.
Neu
, “
Intrinsic dust transport in ASDEX upgrade studied by fast imaging
,”
Nucl. Mater. Energy
18
,
268
274
(
2019
).
13.
S.
Ratynskaia
,
C.
Castaldo
,
K.
Rypdal
,
G.
Morfill
,
U.
de Angelis
,
V.
Pericoli-Ridolfini
,
A.
Rufoloni
, and
E.
Giovannozzi
, “
Hypervelocity dust impacts in FTU scrape-off layer
,”
Nucl. Fusion
48
,
015006
(
2008
).
14.
M.
Tang
,
J. S.
Hu
,
J. G.
Li
,
Y.-F.
Li
,
G.
Morfill
, and
N.
Ashikawa
, “
Recent researches on dust in EAST and HT-7 tokamaks
,”
J. Nucl. Mater.
415
,
S1094
S1097
(
2011
).
15.
J. C.
Slattery
,
J. F.
Friichtenicht
, and
D. O.
Hansen
, “
High-voltage breakdown initiated by particle impact
,”
Appl. Phys. Lett.
7
,
23
25
(
1965
).
16.
A. K.
Chakrabarti
and
P. A.
Chatterton
, “
Microparticle trigger discharges and impact damage in a high-voltage vacuum insulated gap
,”
J. Appl. Phys.
47
,
5320
5328
(
1976
).
17.
M.
Stübig
,
G.
Schäfer
,
T.-M.
Ho
,
R.
Srama
, and
E.
Grün
, “
Laboratory simulation improvements for hypervelocity micrometeorite impacts with a new dust particle source
,”
Planet. Space Sci.
49
,
853
858
(
2001
), part of the Special Issue: Asteroids, Meteorites, Impacts and their Consequences (AMICO 2000).
18.
H.
Shelton
,
C. D.
Hendricks
, Jr.
, and
R. F.
Wuerker
, “
Electrostatic acceleration of microparticles to hypervelocities
,”
J. Appl. Phys.
31
,
1243
1246
(
1960
).
19.
T.
Trottenberg
,
H.
Kersten
, and
H.
Neumann
, “
Feasibility of electrostatic microparticle propulsion
,”
New J. Phys.
10
,
063012
(
2008
).
20.
R. L.
Kustom
, “
Effect of radio-frequency fields on the electrical breakdown of vacuum-insulated electrodes
,”
J. Appl. Phys.
41
,
3256
3268
(
1970
).
21.
H.
Timko
,
K.
Ness Sjobak
,
L.
Mether
,
S.
Calatroni
,
F.
Djurabekova
,
K.
Matyash
,
K.
Nordlund
,
R.
Schneider
, and
W.
Wuensch
, “
From field emission to vacuum arc ignition: A new tool for simulating copper vacuum arcs
,”
Contrib. Plasma Phys.
55
,
299
314
(
2015
).
22.
J.
Wang
and
G.
Loew
, “
Field emission and RF breakdown in high-gradient room temperature linac structures
,” Technical Report No. SLAC-PUB-7684,
Stanford University, Stanford Linear Accelerator Center
,
CA, USA
,
1997
.
23.
J.
Tan
,
H.
Safa
,
B.
Bonin
, and
J.-M.
Tessier
, “
Radiofrequency field-emission studies. I: Design of a microwave cavity
,”
J. Phys. D: Appl. Phys.
27
,
2644
(
1994
).
You do not currently have access to this content.