We report measurements of the temperature- and pressure-dependent resistance, R(T, p), of a manganin manometer in a 4He-gas pressure setup from room temperature down to the solidification temperature of 4He (Tsolid ∼ 50 K at 0.8 GPa) for pressures, p, between 0 GPa and ∼0.8 GPa. The same manganin wire manometer was also measured in a piston-cylinder cell (PCC) from 300 K down to 1.8 K and for pressures between 0 GPa and ∼2 GPa. From these data, we infer the temperature and pressure dependence of the pressure coefficient of manganin, α(T, p), defined by the equation Rp = (1 + αp)R0, where R0 and Rp are the resistances of manganin at ambient pressure and finite pressure, respectively. Our results indicate that upon cooling, α first decreases, then goes through a broad minimum at ∼120 K, and increases again toward lower temperatures. In addition, we find that α is almost pressure-independent at T ≳ 60 K up to p ∼ 2 GPa, but shows a pronounced p dependence at T ≲ 60 K. Using this manganin manometer, we demonstrate that p overall decreases with decreasing temperature in the PCC for the full pressure range and that the size of the pressure difference between room temperature and low temperatures (T = 1.8 K), Δp, decreases with increasing pressure. We also compare the pressure values inferred from the manganin manometer with the low-temperature pressure, determined from the superconducting transition temperature of elemental lead (Pb). As a result of these data and analysis, we propose a practical algorithm to infer the evolution of pressure with temperature in a PCC.

1.
J. S.
Schilling
,
Adv. Phys.
28
,
657
(
1979
).
3.
C. W.
Chu
and
B.
Lorenz
,
Physica C
469
,
385
(
2009
).
4.
J.
Paglione
and
R. L.
Greene
,
Nat. Phys.
6
,
645
(
2010
).
5.
F.
Steglich
and
S.
Wirth
,
Rep. Prog. Phys.
79
,
084502
(
2016
).
6.
H.-K.
Mao
,
B.
Chen
,
J.
Chen
,
K.
Li
,
J.-F.
Lin
,
W.
Yang
, and
H.
Zheng
,
Matter Radiat. Extremes
1
,
59
(
2016
).
7.
A. P.
Drozdov
,
M. I.
Eremets
,
I. A.
Troyan
,
V.
Ksenofontov
, and
S. I.
Shylin
,
Nature
525
,
73
(
2015
).
8.
E.
Gati
,
L.
Xiang
,
S. L.
Bud’ko
, and
P. C.
Canfield
, arXiv:2005.09791 (
2020
).
9.
P. W.
Bridgman
,
Proc. Am. Acad. Arts Sci.
81
,
165
(
1952
).
10.
J. C.
Jamieson
and
A. W.
Lawson
,
J. Appl. Phys.
33
,
776
(
1962
).
11.
F. A.
Smith
,
C. C.
Bradley
, and
G. E.
Bacon
,
J. Phys. Chem. Solids
27
,
925
(
1966
).
12.
A.
Jayaraman
,
A. R.
Hutson
,
J. H.
McFee
,
A. S.
Coriell
, and
R. G.
Maines
,
Rev. Sci. Instrum.
38
,
44
(
1967
).
13.
H.
Fujiwara
,
H.
Kadomatsu
, and
K.
Tohma
,
Rev. Sci. Instrum.
51
,
1345
(
1980
).
14.
M. I.
Eremets
,
High Pressure Experimental Methods
(
Oxford University Press
,
1996
).
15.
E.
Colombier
and
D.
Braithwaite
,
Rev. Sci. Instrum.
78
,
093903
(
2007
).
16.
A.-S.
Rüetschi
and
D.
Jaccard
,
Rev. Sci. Instrum.
78
,
123901
(
2007
).
17.
N. B.
Brandt
,
S. V.
Kuvshinnikov
,
N. Y.
Minina
, and
E. P.
Skipetrov
,
Cryogenics
14
,
464
(
1974
).
18.
A.
Eiling
and
J. S.
Schilling
,
J. Phys. F: Met. Phys.
11
,
623
(
1981
).
19.
J. D.
Thompson
,
Rev. Sci. Instrum.
55
,
231
(
1984
).
20.
T. F.
Smith
and
C. W.
Chu
,
Phys. Rev.
159
,
353
(
1967
).
21.
T. F.
Smith
,
C. W.
Chu
, and
M. B.
Maple
,
Cryogenics
9
,
53
(
1969
).
22.
M. J.
Clark
and
T. F.
Smith
,
J. Low Temp. Phys.
32
,
495
(
1978
).
23.
J.
Wittig
,
C.
Probst
,
F. A.
Schmidt
, and
K. A.
Gschneidner
,
Phys. Rev. Lett.
42
,
469
(
1979
).
24.
B.
Bireckoven
and
J.
Wittig
,
J. Phys. E: Sci. Instrum.
21
,
841
(
1988
).
25.
P. W.
Bridgman
,
Proc. Am. Acad. Arts Sci.
47
,
321
(
1911
).
26.
R. A.
Forman
,
G. J.
Piermarini
,
J. D.
Barnett
, and
S.
Block
,
Science
176
,
284
(
1972
).
27.
J. D.
Barnett
,
S.
Block
, and
G. J.
Piermarini
,
Rev. Sci. Instrum.
44
,
1
(
1973
).
28.
G. J.
Piermarini
,
S.
Block
,
J. D.
Barnett
, and
R. A.
Forman
,
J. Appl. Phys.
46
,
2774
(
1975
).
29.
Y.
Fei
,
A.
Ricolleau
,
M.
Frank
,
K.
Mibe
,
G.
Shen
, and
V.
Prakapenka
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
9182
(
2007
).
30.
H.
Kadomatsu
and
H.
Fujiwara
,
Solid State Commun.
29
,
255
(
1979
).
31.
K.
Kamishima
,
M.
Hagiwara
, and
H.
Yoshida
,
Rev. Sci. Instrum.
72
,
1472
(
2001
).
32.
N.
Fujiwara
,
T.
Matsumoto
,
K.
Nakazawab
,
A.
Hisada
, and
Y.
Uwatoko
,
Rev. Sci. Instrum.
78
,
073905
(
2007
).
33.
E.
Gati
,
G.
Drachuck
,
L.
Xiang
,
L.-L.
Wang
,
S. L.
Bud’ko
, and
P. C.
Canfield
,
Rev. Sci. Instrum.
90
,
023911
(
2019
).
34.
E.
Gati
,
L.
Xiang
,
S. L.
Bud’ko
, and
P. C.
Canfield
,
Rev. Sci. Instrum.
91
,
023904
(
2020
).
35.
36.
W. M.
Becker
,
K.
Hoo
, and
P. G.
Winchell
,
Rev. Sci. Instrum.
47
,
587
(
1976
).
37.
O. E.
Andersson
and
B.
Sundqvist
,
Rev. Sci. Instrum.
68
,
1344
(
1997
).
38.
L. H.
Dmowski
and
E.
Litwin-Staszewska
,
Meas. Sci. Technol.
10
,
343
(
1999
).
39.
U. S.
Kaluarachchi
,
Y.
Deng
,
M. F.
Besser
,
K.
Sun
,
L.
Zhou
,
M. C.
Nguyen
,
Z.
Yuan
,
C.
Zhang
,
J. S.
Schilling
,
M. J.
Kramer
,
S.
Jia
,
C.-Z.
Wang
,
K.-M.
Ho
,
P. C.
Canfield
, and
S. L.
Bud’ko
,
Phys. Rev. B
95
,
224508
(
2017
).
40.
L.
Xiang
,
R. A.
Ribeiro
,
U. S.
Kaluarachchi
,
E.
Gati
,
M. C.
Nguyen
,
C.-Z.
Wang
,
K.-M.
Ho
,
S. L.
Bud’ko
, and
P. C.
Canfield
,
Phys. Rev. B
98
,
214509
(
2018
).
41.
T. N.
Lamichhane
,
L.
Xiang
,
Q.
Lin
,
T.
Pandey
,
D. S.
Parker
,
T.-H.
Kim
,
L.
Zhou
,
M. J.
Kramer
,
S. L.
Bud’ko
, and
P. C.
Canfield
,
Phys. Rev. Mater.
2
,
084408
(
2018
).
42.
S. L.
Bud’ko
,
A. N.
Voronovskii
,
A. G.
Gapotchenko
, and
E. S.
ltskevich
,
Zh. Eksp. Teor. Fiz.
86
,
778
(
1984
); available at jetp.ac.ru/cgi-bin/e/index/e/59/2/p454?a=list.
43.
M. S.
Torikachvili
,
S. K.
Kim
,
E.
Colombier
,
S. L.
Bud’ko
, and
P. C.
Canfield
,
Rev. Sci. Instrum.
86
,
123904
(
2015
).
44.
J.-P.
Pinceaux
,
J.-P.
Maury
, and
J.-M.
Besson
,
J. Phys. Lett.
40
,
307
(
1979
).
45.
R. S.
Manna
,
B.
Wolf
,
M.
de Souza
, and
M.
Lang
,
Rev. Sci. Instrum.
83
,
085111
(
2012
).
46.
C.
Wang
,
Rev. Sci. Instrum.
38
,
24
(
1967
).
47.
R. J.
Zeto
and
H. B.
Vanfleet
,
J. Appl. Phys.
40
,
2227
(
1969
).
48.
N.
Fujioka
,
O.
Mishima
,
S.
Endo
, and
N.
Kawai
,
J. Appl. Phys.
49
,
4830
(
1978
).
49.
C. A.
Swenson
,
Rev. Sci. Instrum.
68
,
1312
(
1997
).
50.
M.
Perfetti
and
G.
Ventura
, “
Data of thermal expansion
,” in
Thermal Properties of Solids at Room and Cryogenic Temperatures
(
Springer
,
Dordrecht
,
2014
), pp.
121
127
.
You do not currently have access to this content.