In this paper, we present a linewidth locking method to control the microwave power in optically pumped cesium-beam frequency standards. The responses of optically pumped cesium-beam tubes and classical cesium-beam tubes are analyzed and compared against the power of the microwave field. Due to the wide probability distribution of atomic velocity resulting from the optical state preparation and detection, the linewidth of the Ramsey pattern is sensitive to the microwave power. The results can be used to control the microwave power instead of using the traditional extremum method. The advantages of the new method are discussed, and we named this new method the linewidth locking method. When the microwave power is well controlled at a low level by the linewidth locking method, the frequency stability of cesium-beam clocks will be improved to a certain degree for the reduction of the Ramsey pattern linewidth. In experiment, using the linewidth locking method, the Allan deviation of our optically pumped cesium-beam frequency standard is 2.64×1012/τ and continues until the averaging time exceeds 1 × 105 s, which is 17% better than that using the traditional extremum method.

1.
J. A.
Kusters
,
L. S.
Cutler
, and
E. D.
Powers
, in
1999 Joint Meeting EFTF-IEEE IFCS
(
IEEE
,
Besancon
,
1999
), Vol. 2, pp.
159
163
.
2.
T. E.
Parker
and
J.
Levine
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
44
,
1239
(
1997
).
3.
A. D.
Marchi
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
34
,
598
(
1987
).
4.
A. D.
Marchi
, in
41st Annual Frequency Control Symposium
(
IEEE
,
Philadelphia
,
1987
), pp.
53
58
.
5.
C.
Audoin
,
N.
Dimarcq
,
V.
Giodano
, and
J.
Viennet
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
39
,
412
(
1992
).
6.
L. S.
Cutler
and
R. P.
Giffard
, in
Proceedings of IEEE Frequency Control Symposium
(
IEEE
,
Hershey
,
1992
), pp.
127
133
.
7.
T.
McClelland
,
I.
Pascaru
,
J.
Zacharski
,
N. H.
Tran
, and
M.
Meirs
, in
41st Annual Frequency Control Symposium
(
IEEE
,
Philadelphia
,
1987
), pp.
59
65
.
8.
P.
Petit
,
V.
Giordano
,
B.
Boussert
,
C. A. P.
Cerez
,
G.
ThbbaId
, and
N.
Dimarcq
, in
Proceedings of Conference on Precision Electromagnetic Measurements Digest
(
IEEE
,
Boulder
,
1994
), p.
133
.
9.
B.
Boussert
,
G. L.
Leclin
,
F.
Hamouda
,
P.
Cerez
, and
G.
Theobald
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
46
,
366
(
1999
).
10.
R.
Lutwak
,
D.
Emmons
,
R. M.
Garvey
, and
P.
Vlitas
, in
33rd Annual Precise Time and Time Interval (PTTI) Meeting
,
2001
.
11.
Q.
Wang
, “
Research on miniature optically pumped cesium beam frequency standard
,” Ph.D. thesis,
Peking University
,
2014
.
12.
13.
J.
Vanier
and
C.
Audoin
,
The Quantum Physics of Atomic Frequency Standards
(
IOP Publishing
,
Philadelphia
,
1989
).
14.
C.
Audoin
,
F.
Hamouda
,
L.
Chassagne
, and
R.
Barillet
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
46
,
407
(
1999
).
15.
P.
Cerez
,
G.
Avila
,
E.
de Clercq
,
M.
de Labachelerie
, and
M.
Tetu
, in
38th Annual Frequency Control Symposium
(
IEEE, Philadelphia
,
1984
), pp.
452
457
.
16.
G.
Avila
,
V.
Giordano
,
V.
Candelier
,
E.
de Clercq
,
G.
Theobald
, and
P.
Cerez
,
Phys. Rev. A
36
,
3719
(
1987
).
17.
H. S.
Lee
,
T. Y.
Kwon
,
H.-S.
Kang
,
Y.-H.
Park
,
S. E.
Park
,
H.
Cho
, and
V. G.
Minogin
,
Metrologia
40
,
224
(
2003
).
18.
S.
Guerandel
,
E.
de Clercq
,
R.
Barillet
, and
C.
Audoin
, in
IEEE International Frequency Control Symposium
(
IEEE
,
2007
), pp.
1050
1055
.
19.
W. B.
Xie
,
Q.
Wang
,
X.
He
,
N.
Chen
,
Z. Z.
Xiong
,
S. W.
Fang
,
X. H.
Qi
, and
X. Z.
Chen
,
Rev. Sci. Instrum.
91
,
074705
(
2020
).
20.
J. H.
Shirley
,
W. D.
Lee
, and
R. E.
Drullinger
,
Metrologia
38
,
427
(
2001
).
You do not currently have access to this content.