Thermal ion retarding potential analyzers (RPAs) are used to measure in situ auroral ionospheric plasma parameters. This article analyzes data from a low-resource RPA in order to quantify the capability of the sensor. The RPA collects a sigmoidal current–voltage (I–V) curve, which depends on a non-linear combination of Maxwellian plasma parameters, so a forward-modeling procedure is used to match the best choice plasma parameters for each I–V curve. First, the procedure is used, given constraining information about the flow moment, to find scalar plasma parameters—ion temperature, ion density, and spacecraft sheath potential—for a single I–V curve interpreted in the context of a Maxwellian plasma distribution. Second, two azimuthally separated I–V curves from a single sensor on the spinning spacecraft are matched, given constraining information on density and sheath potential, to determine the bulk plasma flow components. These flows are compared to a high-fidelity, high-resource flow diagnostic. In both cases, the procedure’s sensitivity to variations in constraining diagnostics is tested to ensure that the matching procedure is robust. Finally, a standalone analysis is shown, providing plasma scalar and flow parameters using known payload velocity and International Reference Ionosphere density as input information. The results show that the sensor can determine scalar plasma measurements as designed, as well as determine plasma DC flows to within hundreds of m/s error compared to a high-fidelity metric, thus showing their capability to replace higher-resource methods for determining DC plasma flows when coarse-resolution measurements at in situ spatial scales are suitable.

1.
R.
Heelis
and
W.
Hanson
, “
Measurements of thermal ion drift velocity and temperature using planar sensors
,”
Geophys. Monograph: Am. Geophys. Union
102
,
61
72
(
1998
).
2.
R.
Haaser
,
G.
Earle
,
R.
Heelis
,
J.
Klenzing
,
R.
Stoneback
,
W.
Coley
, and
A.
Burrell
, “
Characteristics of low-latitude ionospheric depletions and enhancements during solar minimum
,”
J. Geophys. Res.: Space Phys.
117
(
A10
),
A10305
, (
2012
).
3.
L.
Fanelli
,
S.
Noel
,
G. D.
Earle
,
C.
Fish
,
R. L.
Davidson
,
R. V.
Robertson
,
P.
Marquis
,
V.
Garg
,
N.
Somasundaram
,
L.
Kordella
 et al., “
A versatile retarding potential analyzer for nano-satellite platforms
,”
Rev. Sci. Instrum.
86
(
12
),
124501
(
2015
).
4.
T. M.
Roberts
,
K. A.
Lynch
,
R. E.
Clayton
,
J.
Weiss
, and
D. L.
Hampton
, “
A small spacecraft for multipoint measurement of ionospheric plasma
,”
Rev. Sci. Instrum.
88
(
7
),
073507
(
2017
).
5.
W. E.
Archer
,
D. J.
Knudsen
,
J. K.
Burchill
,
B.
Jackel
,
E.
Donovan
,
M.
Connors
, and
L.
Juusola
, “
Birkeland current boundary flows
,”
J. Geophys. Res.: Space Phys.
122
(
4
),
4617
4627
, (
2017
).
6.
R.
Clayton
,
K.
Lynch
,
M.
Zettergren
,
M.
Burleigh
,
M.
Conde
,
G.
Grubbs
,
D.
Hampton
,
D.
Hysell
,
M.
Lessard
,
R.
Michell
 et al., “
Two dimensional maps of in situ ionospheric plasma flow data near auroral arcs using auroral imagery
,”
J. Geophys. Res.: Space Phys.
124
,
3036
, (
2019
).
7.
M. C.
Kelley
,
The Earth’s Ionosphere
. International Geophysics Series (
Academic Press
,
1989
).
8.
R.
Schunk
and
A.
Nagy
,
Ionospheres: Physics, Plasma Physics, and Chemistry
, Cambridge Atmospheric and Space Science Series, 2nd ed. (
Cambridge University Press
,
2009
).
9.
R. W.
Schunk
,
W. J.
Raitt
, and
P. M.
Banks
, “
Effect of electric fields on the daytime high-latitude E and F regions
,”
J. Geophys. Res.
80
(
22
),
3121
3130
, (
1975
).
10.
M.
Zettergren
and
J.
Semeter
, “
Ionospheric plasma transport and loss in auroral downward current regions
,”
J. Geophys. Res.: Space Phys.
117
(
A6
),
A06306
, (
2012
).
11.
P. A.
Fernandes
and
K. A.
Lynch
, “
Electrostatic analyzer measurements of ionospheric thermal ion populations
,”
J. Geophys. Res.: Space Phys.
121
(
7
),
7316
7325
, (
2016
).
12.
L. E.
Fisher
,
K. A.
Lynch
,
P. A.
Fernandes
,
T. A.
Bekkeng
,
J.
Moen
,
M.
Zettergren
,
R. J.
Miceli
,
S.
Powell
,
M. R.
Lessard
, and
P.
Horak
, “
Including sheath effects in the interpretation of planar retarding potential analyzer’s low-energy ion data
,”
Rev. Sci. Instrum.
87
(
4
),
043504
(
2016
).
13.
E.
Klatt
,
P.
Kintner
,
C.
Seyler
,
K.
Liu
,
E.
MacDonald
, and
K.
Lynch
, “
SIERRA observations of alfvénic processes in the topside auroral ionosphere
,”
J. Geophys. Res.: Space Phys.
110
(
A10
),
A10512
, (
2005
).
14.
L.
Sangalli
,
D.
Knudsen
,
M.
Larsen
,
T.
Zhan
,
R.
Pfaff
, and
D.
Rowland
, “
Rocket-based measurements of ion velocity, neutral wind, and electric field in the collisional transition region of the auroral ionosphere
,”
J. Geophys. Res.: Space Phys.
114
(
A4
),
A04306
, (
2009
).
15.
M. L.
Psiaki
,
S. P.
Powell
,
E. M.
Klatt
, and
P. M.
Kintner
, “
Practical design and flight test of a Yo-Yo wire boom deployment system
,”
J. Guid., Control, Dyn.
28
(
1
),
85
95
(
2005
).
16.
R. W.
Schunk
and
J. J.
Sojka
, “
Ion temperature variations in the daytime high-latitude f region
,”
J. Geophys. Res.: Space Phys.
87
(
A7
),
5169
5183
, (
1982
).
17.
See http://irimodel.org for International reference ionosphere.
18.
P. A.
Fernandes
,
K. A.
Lynch
,
M.
Zettergren
,
D. L.
Hampton
,
T. A.
Bekkeng
,
I. J.
Cohen
,
M.
Conde
,
L. E.
Fisher
,
P.
Horak
,
M. R.
Lessard
 et al., “
Measuring the seeds of ion outflow: Auroral sounding rocket observations of low-altitude ion heating and circulation
,”
J. Geophys. Res.: Space Phys.
121
(
2
),
1587
1607
, (
2016
).
19.
J. Z.
Weiss
, “
Bloon: Software and hardware for data collection and real-time analysis
,” Technical Report No. TR2016-806,
Dartmouth College, Computer Science
,
Hanover, NH
,
May 2016
.
20.
K. M.
Frederick-Frost
and
K. A.
Lynch
, “
Experimental studies of low density and temperature ion and electron sheaths
,”
Phys. Plasmas
14
(
12
),
123503
(
2007
).
21.
I. J.
Cohen
,
M.
Widholm
,
M. R.
Lessard
,
P.
Riley
,
J.
Heavisides
,
J. I.
Moen
,
L. B. N.
Clausen
, and
T. A.
Bekkeng
, “
Rocket-borne measurements of electron temperature and density with the electron retarding potential analyzer instrument
,”
J. Geophys. Res.: Space Phys.
121
(
7
),
6774
6782
, (
2016
).
22.
M. U.
Siddiqui
,
L. E.
Gayetsky
,
M. R.
Mella
,
K. A.
Lynch
, and
M. R.
Lessard
, “
A laboratory experiment to examine the effect of auroral beams on spacecraft charging in the ionosphere
,”
Phys. Plasmas
18
(
9
),
092905
(
2011
).
23.
C. J.
Heinselman
and
M. J.
Nicolls
, “
A Bayesian approach to electric field and e-region neutral wind estimation with the poker flat advanced modular incoherent scatter radar
,”
Radio Sci.
43
(
5
),
RS5013
(
2008
).
24.
M.
Newville
, “
Getting started with non-linear least-squares fitting
” (
2019
), https://lmfit.github.io/lmfit-py/intro.html.
25.
J. P.
Thayer
and
J.
Semeter
, “
The convergence of magnetospheric energy flux in the polar atmosphere
,”
J. Atmos. Solar: Terr. Phys.
66
,
807
824
(
2004
).
26.
J.-P.
St.-Maurice
and
W. B.
Hanson
, “
Ion frictional heating at high latitudes and its possible use for an in situ determination of neutral thermospheric winds and temperatures
,”
J. Geophys. Res.: Space Phys.
87
(
A9
),
7580
7602
, (
1982
).
27.
C.
Anderson
,
M.
Conde
, and
M. G.
McHarg
, “
Neutral thermospheric dynamics observed with two scanning Doppler imagers: 1. Monostatic and bistatic winds
,”
J. Geophys. Res.: Space Phys.
117
(
A3
),
A03304
, (
2012
).
28.
M.
Burleigh
and
M.
Zettergren
, “
Anisotropic fluid modeling of ionospheric upflow: Effects of low-altitude anisotropy and thermospheric winds
,”
J. Geophys. Res.: Space Phys.
122
(
1
),
808
827
, (
2017
).
29.
J. M.
Picone
,
A. E.
Hedin
,
D. P.
Drob
, and
A. C.
Aikin
, “
NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues
,”
J. Geophys. Res.: Space Phys.
107
(
A12
),
SIA 15-1
SIA 15-16
, (
2002
).
30.

Equation (4) as written here has numerical values of 6.4145 × 10−04 * (velocity difference)2 + 800; while the numerical version used in the code to generate the plots and analysis (with the exception of the effective neutral mass sensitivity in Sec. V C) was 6.4612 × 10−4 * (velocity difference)2 + 803.

31.
M.
Burleigh
 et al., “
Spatiotemporal limitations of data driven modeling: An ISINGLASS case study
” (unpublished) (
2020
).
You do not currently have access to this content.