Directional solidification (DS) is an established manufacturing process to produce high-performance components from metallic materials with optimized properties. Materials for demanding high-temperature applications, for instance in the energy generation and aircraft engine technology, can only be successfully produced using methods such as directional solidification. It has been applied on an industrial scale for a considerable amount of time, but advancing this method beyond the current applications is still challenging and almost exclusively limited to post-process characterization of the developed microstructures. For a knowledge-based advancement and a contribution to material innovation, in situ studies of the DS process are crucial using realistic sample sizes to ensure scalability of the results to industrial sizes. Therefore, a specially designed Flexible Directional Solidification (FlexiDS) device was developed for use at the P07 High Energy Materials Science beamline at PETRA III (Deutsches Elektronen–Synchrotron, Hamburg, Germany). In general, the process conditions of the crucible-free, inductively heated FlexiDS device can be varied from 6 mm/h to 12 000 mm/h (vertical withdrawal rate) and from 0 rpm to 35 rpm (axial sample rotation). Moreover, different atmospheres such as Ar, N2, and vacuum can be used during operation. The device is designed for maximum operation temperatures of 2200 °C. This unique device allows in situ examination of the directional solidification process and subsequent solid-state reactions by x-ray diffraction in the transmission mode. Within this project, different structural intermetallic alloys with liquidus temperatures up to 2000 °C were studied in terms of liquid–solid regions, transformations, and decompositions, with varying process conditions.

1.
R. C.
Reed
,
The Superalloys: Fundamentals and Applications
(
Cambridge University Press
,
Cambridge
,
2006
).
2.
T.
Haenschke
,
A.
Gali
,
M.
Heilmaier
,
M.
Krüger
,
H.
Bei
, and
E. P.
George
, “
Synthesis and characterization of lamellar and fibre-reinforced NiAl-Mo and NiAl-Cr
,”
J. Phys.: Conf. Ser.
240
,
012063
(
2010
).
3.
H.
Bei
and
E. P.
George
, “
Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy
,”
Acta Mater.
53
,
69
77
(
2005
).
4.
H. E.
Cline
,
J. L.
Walter
,
E.
Lifshin
, and
R. R.
Russell
, “
Structures, faults, and the rod-plate transition in eutectics
,”
Metall. Trans.
2
,
189
194
(
1971
).
5.
H. E.
Cline
and
J. L.
Walter
, “
The effect of alloy additions on the rod-plate transition in the eutectic NiAl-Cr
,”
Metall. Trans.
1
,
2907
2917
(
1971
).
6.
G.
Frommeyer
,
R.
Rablbauer
, and
H. J.
Schäfer
, “
Elastic properties of B2-ordered NiAl and NiAl-X (Cr, Mo, W) alloys
,”
Intermetallics
18
,
299
305
(
2010
).
7.
A.
Misra
,
R.
Gibala
, and
R. D.
Noebe
, “
Optimization of toughness and strength in multiphase intermetallics
,”
Intermetallics
9
,
971
978
(
2001
).
8.
C.
Seemüller
,
M.
Heilmaier
,
T.
Haenschke
,
H.
Bei
,
A.
Dlouhy
, and
E. P.
George
, “
Influence of fiber alignment on creep in directionally solidified NiAl–10Mo in-situ composites
,”
Intermetallics
35
,
110
115
(
2013
).
9.
D. R.
Johnson
,
X. F.
Chen
,
B. F.
Oliver
,
R. D.
Noebe
, and
J. D.
Whittenberger
, “
Processing and mechanical properties of in-situ composites from the NiAI-Cr and the NiAI-(Cr,Mo) eutectic systems
,”
Intermetallics
3
,
99
113
(
1995
).
10.
J. D.
Whittenberger
,
S. V.
Raj
,
I. E.
Locci
, and
J. A.
Salem
, “
Effect of growth rate on elevated temperature plastic flow and room temperature fracture toughness of directionally solidified NiAl-31Cr-3Mo
,”
Intermetallics
7
,
1159
1168
(
1999
).
11.
N.
Shevchenko
,
S.
Boden
,
G.
Gerbeth
, and
S.
Eckert
, “
Chimney formation in solidifying Ga-25 wt pct In alloys under the influence of thermosolutal melt convection
,”
Metall. Mater. Trans. A
44
,
3797
3808
(
2013
).
12.
N.
Shevchenko
,
O.
Roshchupkina
,
O.
Sokolova
, and
S.
Eckert
, “
The effect of natural and forced melt convection on dendritic solidification in Ga-In alloys
,”
J. Cryst. Growth
417
,
1
8
(
2015
).
13.
A.
Saad
,
C.-A.
Gandin
,
M.
Bellet
,
N.
Shevchenko
, and
S.
Eckert
, “
Simulation of channel segregation during directional solidification of In-75 wt pct Ga. Qualitative comparison with in situ observations
,”
Metall. Mater. Trans. A
46
,
4886
4897
(
2015
).
14.
See https://www.systec-fertigungstechnik.de/produkte/maschinen-und-anlagenbau.html for SYSTEC Fertigungstechnik GmbH & Co.KG, Products; retrieved 2 June 2020.
15.
See https://www.itg-induktion.de/en/home for iTG Indutionsanlagen GmbH; retrieved from 02 June 2020.
16.
See https://www.hema.de/en/services/products/seelector-icam-weld for Hema Electronic, Products; retrieved 2 June 2020.
18.
N.
Schell
,
A.
King
,
F.
Beckmann
,
T.
Fischer
,
M.
Müller
, and
A.
Schreyer
, “
The high energy materials science beamline (HEMS) at PETRA III
,”
Mater. Sci. Forum
772
,
57
61
(
2013
).
19.
N.
Schell
, The High Energy Materials Science Beamline of Helmholtz-Zentrum Geesthacht (HZG) and DESY, 2020; retrieved from http://photon-science.desy.de/facilities/petra_iii/beamlines/p07_high_energy_materials_science/index_eng.html.
20.
A.
Scherf
,
A.
Kauffmann
,
S.
Kauffmann-Weiss
,
T.
Scherer
,
X.
Li
,
F.
Stein
, and
M.
Heilmaier
, “
Orientation relationship of eutectoid FeAl and FeAl2
,”
J. Appl. Crystallogr.
49
,
442
449
(
2016
).
21.
F.
Gang
,
A.
Kauffmann
, and
M.
Heilmaier
,
Metall. Mater. Trans. A
49
,
763
771
(
2018
).
22.
C.
Gombola
,
A.
Kauffmann
,
G.
Geramifard
,
M.
Blankenburg
, and
M.
Heilmaier
, “
Microstructural investigations of novel high temperature alloys based on NiAl-(Cr,Mo)
,”
Metals
10
,
961
(
2020
).
23.
G.
Hasemann
,
S.
Ida
,
L.
Zhu
,
T.
Iizawa
,
K.
Yoshimi
, and
M.
Krüger
, “
Experimental assessment of the microstructure evolution and liquidus projection in the Mo-rich Mo-Si-B system
,”
Mater. Des.
185
,
108233
(
2020
).
24.
M.
Oehring
,
V.
Küstner
,
F.
Appel
, and
U.
Lorenz
, “
Analysis of the solidification microstructure of multi-component γ-TiAl alloys
,”
Mater. Sci. Forum
539-543
,
1475
1480
(
2007
).
25.
B. P.
Bewlay
,
S.
Nag
,
A.
Suzuki
, and
M. J.
Weimer
, “
TiAl alloys in commercial aircraft engines
,”
Mater. High Temp.
33
,
549
559
(
2016
).
26.
M.
Todai
,
T.
Nakano
,
T.
Liu
,
H. Y.
Yasuda
,
K.
Hagihara
,
K.
Cho
,
M.
Ueda
, and
M.
Takeyama
, “
Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting
,”
Addit. Manuf.
13
,
61
70
(
2017
).
27.
M.
Thomas
,
T.
Malot
,
P.
Aubry
,
C.
Colin
,
T.
Vilaro
, and
P.
Bertrand
, “
The prospects for additive manufacturing of bulk TiAl alloy
,”
Mater. High Temp.
33
,
571
577
(
2016
).
28.
S.
Mayer
,
P.
Erdely
,
F. D.
Fischer
,
D.
Holec
,
M.
Kastenhuber
,
T.
Klein
, and
H.
Clemens
, “
Intermetallic β-solidifying γ-TiAl based alloys – from fundamental research to application
,”
Adv. Eng. Mater.
19
,
1600735
(
2017
).
29.
M.
Yamguchi
,
H.
Inui
, and
K.
Ito
, “
High-temperature structural intermetallics
,”
Acta Mater.
48
,
307
322
(
2000
).
30.
O.
Hunziker
,
M.
Vandyoussefi
, and
W.
Kurz
,
Acta Mater.
46
,
6325
6336
(
1998
).
31.
C.
McCullough
,
J. J.
Valencia
,
C. G.
Levi
, and
R.
Mehrabian
,
Acta Metall.
37
,
1321
1336
(
1989
).
32.
X.
Li
,
A.
Scherf
,
M.
Heilmaier
, and
F.
Stein
, “
The Al-rich part of the Fe-Al phase diagram
,”
J. Phase Equilib. Diffus.
37
,
162
173
(
2016
).
33.
F.
Stein
,
S. C.
Vogel
,
M.
Eumann
, and
M.
Palm
, “
Determination of the crystal structure of the ε phase in the Fe-Al system by high-temperature neutron diffraction
,”
Intermetallics
18
,
150
156
(
2010
).
You do not currently have access to this content.