Superparamagnetic colloidal particles can be reversibly assembled into wheel-like structures called microwheels (μwheels), which roll on surfaces due to friction and can be driven at user-controlled speeds and directions using rotating magnetic fields. Here, we describe the hardware and software to create and control the magnetic fields that assemble and direct μwheel motion and the optics to visualize them. Motivated by portability, adaptability, and low-cost, an extruded aluminum heat-dissipating frame incorporating open optics and audio speaker coils outfitted with high magnetic permeability cores was constructed. Open-source software was developed to define the magnitude, frequency, and orientation of the magnetic field, allowing for real-time joystick control of μwheels through two-dimensional (2D) and three-dimensional (3D) fluidic environments. With this combination of hardware and software, μwheels translate at speeds up to 50 µm/s through sample sizes up to 5 × 5 × 5 cm3 using 0.75 mT–2.5 mT magnetic fields with rotation frequencies of 5 Hz–40 Hz. Heat dissipation by aluminum coil clamps maintained sample temperatures within 3 °C of ambient temperature, a range conducive for biological applications. With this design, μwheels can be manipulated and imaged in 2D and 3D networks at length scales of micrometers to centimeters.

1.
S.
Jeon
,
S.
Kim
,
S.
Ha
,
S.
Lee
,
E.
Kim
,
S. Y.
Kim
,
S. H.
Park
,
J. H.
Jeon
,
S. W.
Kim
, and
C.
Moon
,
Sci. Rob.
4
,
eaav4317
(
2019
).
2.
L.
Mellal
,
D.
Folio
,
K.
Belharet
, and
A.
Ferreira
, in
Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(
IEEE
,
2015
).
3.
T.
Yang
,
T. O.
Tasci
,
K. B.
Neeves
,
N.
Wu
, and
D. W.
Marr
,
Langmuir
33
,
5932
(
2017
).
4.
H.
Xie
,
M.
Sun
,
X.
Fan
,
Z.
Lin
,
W.
Chen
,
L.
Wang
,
L.
Dong
, and
Q.
He
,
Sci. Rob.
4
,
eaav8006
(
2019
).
5.
J. S.
Guasto
,
R.
Rusconi
, and
R.
Stocker
,
Annu. Rev. Fluid Mech.
44
,
373
(
2012
).
6.
J. J.
Abbott
,
Z.
Nagy
,
F.
Beyeler
, and
B. J.
Nelson
,
IEEE Rob. Autom. Mag.
14
,
92
(
2007
).
7.
S.
Yu
,
N.
Ma
,
H.
Yu
,
H.
Sun
,
X.
Chang
,
Z.
Wu
,
J.
Deng
,
S.
Zhao
,
W.
Wang
,
G.
Zhang
,
W.
Zhang
,
Q.
Zhao
, and
T.
Li
,
Nanomaterials
9
,
1672
(
2019
).
8.
F.
Guzmán-Lastra
,
A.
Kaiser
, and
H.
Löwen
,
Nat. Commun.
7
,
13519
(
2016
).
9.
X.-Z.
Chen
,
M.
Hoop
,
F.
Mushtaq
,
E.
Siringil
,
C.
Hu
,
B. J.
Nelson
, and
S.
Pané
,
Appl. Mater. Today
9
,
37
(
2017
).
10.
G.
Hwang
,
D.
Decanini
,
L.
Leroy
, and
A. M.
Haghiri-Gosnet
,
Rev. Sci. Instrum.
87
,
036104
(
2016
).
11.
D.
Walker
,
B. T.
Käsdorf
,
H.-H.
Jeong
,
O.
Lieleg
, and
P.
Fischer
,
Sci. Adv.
1
,
e1500501
(
2015
).
12.
J.
Palacci
,
S.
Sacanna
,
A. P.
Steinberg
,
D. J.
Pine
, and
P. M.
Chaikin
,
Science
339
,
936
(
2013
).
13.
L.
Zhang
,
T.
Petit
,
Y.
Lu
,
B. E.
Kratochvil
,
K. E.
Peyer
,
R.
Pei
,
J.
Lou
, and
B. J.
Nelson
,
ACS Nano
4
,
6228
(
2010
).
14.
D.
Gong
,
J.
Cai
,
N.
Celi
,
C.
Liu
,
W.
Zhang
,
L.
Feng
, and
D.
Zhang
,
Appl. Phys. Lett.
114
,
123701
(
2019
).
15.
M. P.
Kummer
,
J. J.
Abbott
,
B. E.
Kratochvil
,
R.
Borer
,
A.
Sengul
, and
B. J.
Nelson
,
IEEE Trans. Rob.
26
,
1006
(
2010
).
16.
C.
Jiang
,
T. A.
Lionberger
,
D. M.
Wiener
, and
E.
Meyhofer
,
Rev. Sci. Instrum.
87
,
084304
(
2016
).
17.
T. O.
Tasci
,
P. S.
Herson
,
K. B.
Neeves
, and
D. W. M.
Marr
,
Nat. Commun.
7
,
10225
(
2016
).
18.
D.
Disharoon
,
K. B.
Neeves
, and
D. W.
Marr
,
Langmuir
35
,
3455
(
2019
).
19.
T. O.
Tasci
,
D.
Disharoon
,
R. M.
Schoeman
,
K.
Rana
,
P. S.
Herson
,
D. W.
Marr
, and
K. B.
Neeves
,
Small
13
,
1700954
(
2017
).
20.
C. J.
Zimmermann
, www.czimm79/MuControl-release,
GitHub
,
2019
.
21.
D. C.
Duffy
,
J. C.
McDonald
,
O. J.
Schueller
, and
G. M.
Whitesides
,
Anal. Chem.
70
,
4974
(
1998
).
22.
23.
L.
Compagnola
, PyQtGraph, http://www.pyqtgraph.org/,
2019
.
24.
nidaqmx, https://github.com/ni/nidaqmx-python, National Instruments,
2019
.
25.
M.
Herrmann
, fbs, https://build-system.fman.io/,
GitHub
,
2019
.

Supplementary Material

You do not currently have access to this content.