Inelastic deformation of minerals and rocks is associated with activation of various defects such as fractures, twins, and dislocations. Active and passive ultrasound probes are potential tools to examine the nature of these defects under a broad range of pressure and temperature conditions. Here, we report on the development of an ultrasound probe array that allows us to monitor deforming samples in a high-pressure, high-temperature solid medium apparatus (a modified Griggs rig). We utilize several broadband miniature piezoelectric sensors that are placed above and below the sample to record acoustic emissions accompanying deformation and determine their locations in 1D. The emissions are recorded at 50 MS/s with a 12 bit resolution. Proper grounding and electric insulation of the sensors, together with optimized power delivery from the heating system, tremendously reduces electromagnetic interference and allows for a background noise level of ≈90 mV at a full range of ±2 V and 60 dB amplification. The system is capable of recording acoustic waves from 80 kHz to 2.5 MHz at sample temperatures up to 1100 °C and confining pressure up to 2.5 GPa.

1.
Aben
,
F. M.
,
Brantut
,
N.
, and
Mitchell
,
T. M.
, “
Off-fault damage characterisation during and after experimental quasi-static and dynamic rupture in crustal rock from laboratory P-wave tomography and microstructures
,”
J. Geophys. Res.: Solid Earth
125
,
e2020JB019860
, (
2020
).
2.
Agarwal
,
A. B. L.
,
Frederick
,
J. R.
, and
Felbeck
,
D. K.
, “
Detection of plastic microstrain in aluminum by acoustic emission
,”
Metall. Trans.
1
(
4
),
1069
(
1970
).
3.
Aki
,
K.
and
Richards
,
P. G.
,
Quantitative Seismology
, 2nd ed. (
University Science Books
,
2002
).
4.
Bak
,
P.
and
Tang
,
C.
, “
Earthquakes as a self-organized critical phenomenon
,”
J. Geophys. Res.: Solid Earth
94
(
B11
),
15635
15637
, (
1989
).
5.
Bass
,
J. D.
and
Zhang
,
J. S.
, “
Theory and practice: Techniques for measuring high-P–T elasticity
,” in
Treatise on Geophysics
, 2nd ed., edited by
Schubert
,
G.
(
Elsevier
,
Oxford
,
2015
), Chap. 2.12, pp.
293
312
.
6.
Benson
,
P. M.
,
Vinciguerra
,
S.
,
Meredith
,
P. G.
, and
Young
,
R. P.
, “
Laboratory simulation of volcano seismicity
,”
Science
322
(
5899
),
249
252
(
2008
).
7.
Birch
,
F.
, “
The variation of seismic velocities within a simplified earth model, in accordance with the theory of finite strain
,”
Bull. Seismol. Soc. Am.
29
(
3
),
463
479
(
1939
).
8.
Blacic
,
J. D.
and
Hagman
,
R. L.
, “
Wide-band optical–mechanical system for measuring acoustic emissions at high temperature and pressure
,”
Rev. Sci. Instrum.
48
(
7
),
729
732
(
1977
).
9.
Borch
,
R. S.
and
Green
,
H. W.
, “
Deformation of peridotite at high pressure in a new molten salt cell: Comparison of traditional and homologous temperature treatments
,”
Phys. Earth Planet. Inter.
55
(
3-4
),
269
276
(
1989
).
10.
Bridgman
,
P. W.
,
The Physics of High Pressure
(
G. Bell and Sons, Ltd.
,
London
,
1931
), pp.
825
847
.
11.
Burnley
,
P. C.
and
Getting
,
I. C.
, “
Creating a high temperature environment at high pressure in a gas piston cylinder apparatus
,”
Rev. Sci. Instrum.
83
(
1
),
014501
(
2012
).
12.
Burnley
,
P. C.
and
Zhang
,
D.
, “
Interpreting in situ x-ray diffraction data from high pressure deformation experiments using elastic-plastic self-consistent models: An example using quartz
,”
J. Phys.: Condens. Matter
20
,
285201
(
2008
).
13.
Chantel
,
J.
,
Manthilake
,
G.
,
Andrault
,
D.
,
Novella
,
D.
,
Yu
,
T.
, and
Wang
,
Y.
, “
Experimental evidence supports mantle partial melting in the asthenosphere
,”
Sci. Adv.
2
(
5
),
e1600246
(
2016
).
14.
de Ronde
,
A. A.
,
Stünitz
,
H.
,
Tullis
,
J.
, and
Heilbronner
,
R.
, “
Reaction-induced weakening of plagioclase–olivine composites
,”
Tectonophysics
409
(
1-4
),
85
106
(
2005
).
15.
Dobson
,
D. P.
,
Meredith
,
P. G.
, and
Boon
,
S. A.
, “
Simulation of subduction zone seismicity by dehydration of serpentine
,”
Science
298
(
5597
),
1407
1410
(
2002
).
16.
French
,
M. E.
,
Hirth
,
G.
, and
Okazaki
,
K.
, “
Fracture-induced pore fluid pressure weakening and dehydration of serpentinite
,”
Tectonophysics
767
,
228168
(
2019
).
17.
Gasc
,
J.
,
Schubnel
,
A.
,
Brunet
,
F.
,
Guillon
,
S.
,
Mueller
,
H.-J.
, and
Lathe
,
C.
, “
Simultaneous acoustic emissions monitoring and synchrotron x-ray diffraction at high pressure and temperature: Calibration and application to serpentinite dehydration
,”
Phys. Earth Planet. Inter.
189
(
3-4
),
121
133
(
2011
).
18.
Ghaffari
,
H. O.
,
Griffith
,
W. A.
, and
Pec
,
M.
, “
Solitonic state in microscopic dynamic failures
,”
Sci. Rep.
9
(
1
),
1967
(
2019
).
19.
Ghaffari
,
H. O.
,
Nasseri
,
M. H. B.
, and
Young
,
R. P.
, “
Faulting of rocks in a three-dimensional stress field by micro-anticracks
,”
Sci. Rep.
4
,
5011
(
2014
).
20.
Ghaffari
,
H. O.
and
Pec
,
M.
(
2020
). “
An ultrasound probe array for a high-pressure, high-temperature solid medium deformation apparatus: CAD drawings and MATLAB codes
,” Zenodo. .
21.
Ghaffari
,
H. O.
and
Young
,
R. P.
, “
Acoustic-friction networks and the evolution of precursor rupture fronts in laboratory earthquakes
,”
Sci. Rep.
3
,
1799
(
2013
).
22.
Gleason
,
G. C.
and
Tullis
,
J.
, “
A flow law for dislocation creep of quartz aggregates determined with the molten salt cell
,”
Tectonophysics
247
(
1-4
),
1
23
(
1995
).
23.
Glover
,
P. W. J.
,
Baud
,
P.
,
Darot
,
M.
,
Meredith
,
P. G.
,
Boon
,
S. A.
,
LeRavalec
,
M.
 et al., “
α/β phase transition in quartz monitored using acoustic emissions
,”
Geophys. J. Int.
120
(
3
),
775
782
(
1995
).
24.
Green
,
H. W.
,
Scholz
,
C. H.
,
Tingle
,
T. N.
,
Young
,
T. E.
, and
Koczynski
,
T. A.
, “
Acoustic emissions produced by anticrack faulting during the olivine → spinel transformation
,”
Geophys. Res. Lett.
19
(
8
),
789
792
, (
1992
).
25.
Griggs
,
D.
, “
Hydrolytic weakening of quartz and other silicates
,”
Geophys. J. Int.
14
(
1-4
),
19
31
(
1967
).
26.
Guéguen
,
Y.
and
Schubnel
,
A.
, “
Elastic wave velocities and permeability of cracked rocks
,”
Tectonophysics
370
(
1-4
),
163
176
(
2003
).
27.
Gutenberg
,
B.
and
Richter
,
C. F.
, “
Magnitude and energy of earthquakes
,”
Nature
176
(
4486
),
795
(
1955
).
28.
Heilbronner
,
R.
and
Tullis
,
J.
, “
Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite
,”
J. Geophys. Res.
111
,
B10202
, (
2006
).
29.
Hirth
,
G.
and
Tullis
,
J.
, “
The brittle-plastic transition in experimentally deformed quartz aggregates
,”
J. Geophys. Res.: Solid Earth
99
(
B6
),
11731
, (
1994
).
30.
Holyoke
,
C. W.
and
Kronenberg
,
A. K.
, “
Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology
,”
Tectonophysics
494
,
17
31
(
2010
).
31.
Holyoke
,
C. W.
,
Kronenberg
,
A. K.
,
Newman
,
J.
, and
Ulrich
,
C.
, “
Rheology of magnesite
,”
J. Geophys. Res.: Solid Earth
119
(
8
),
6534
6557
, (
2014
).
32.
Horowitz
,
P.
and
Hill
,
W.
,
The Art of Electronics
(
Cambridge University Press
,
1989
).
33.
Incel
,
S.
,
Hilairet
,
N.
,
Labrousse
,
L.
,
John
,
T.
,
Deldicque
,
D.
,
Ferrand
,
T.
 et al., “
Laboratory earthquakes triggered during eclogitization of lawsonite-bearing blueschist
,”
Earth Planet. Sci. Lett.
459
,
320
331
(
2017
).
34.
Kern
,
H.
, “
Elastic-wave velocity in crustal and mantle rocks at high pressure and temperature: The role of the high-low quartz transition and of dehydration reactions
,”
Phys. Earth Planet. Inter.
29
(
1
),
12
23
(
1982
).
35.
Kohlbrecher
,
J.
,
Bollhalder
,
A.
,
Vavrin
,
R.
, and
Meier
,
G.
, “
A high pressure cell for small angle neutron scattering up to 500 MPa in combination with light scattering to investigate liquid samples
,”
Rev. Sci. Instrum.
78
(
12
),
125101
(
2007
).
36.
Li
,
B.
and
Liebermann
,
R. C.
, “
Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry
,”
Phys. Earth Planet. Inter.
233
,
135
153
(
2014
).
37.
Lockner
,
D.
, “
The role of acoustic emission in the study of rock fracture
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
30
,
883
899
(
1993
).
38.
Mathur
,
R. M.
and
Varma
,
R. K.
,
Thyristor-Based FACTS Controllers for Electrical Transmission Systems
(
John Wiley & Sons
,
2002
).
39.
McLaskey
,
G. C.
and
Kilgore
,
B. D.
, “
Foreshocks during the nucleation of stick-slip instability
,”
J. Geophys. Res.: Solid Earth
118
(
6
),
2982
2997
, (
2013
).
40.
Ohuchi
,
T.
,
Lei
,
X.
,
Higo
,
Y.
,
Tange
,
Y.
, and
Sakai
,
T.
, “
Switching from seismic faulting to silent slips in harzburgite induced by H2O fluid at upper mantle pressures
,”
Contrib. Mineral. Petrol.
175
(
8
),
1
19
(
2020
).
41.
Okazaki
,
K.
and
Hirth
,
G.
, “
Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust
,”
Nature
530
(
7588
),
81
84
(
2016
).
42.
Passelègue
,
F. X.
,
Schubnel
,
A.
,
Nielsen
,
S.
,
Bhat
,
H. S.
, and
Madariaga
,
R.
, “
From sub-Rayleigh to supershear ruptures during stick-slip experiments on crustal rocks
,”
Science
340
(
6137
),
1208
1211
(
2013
).
43.
Pec
,
M.
,
Stünitz
,
H.
, and
Heilbronner
,
R.
, “
Semi-brittle deformation of granitoid gouges in shear experiments at elevated pressures and temperatures
,”
J. Struct. Geol.
38
,
200
221
(
2012a
).
44.
Pec
,
M.
,
Stünitz
,
H.
,
Heilbronner
,
R.
, and
Drury
,
M.
, “
Semi-brittle flow of granitoid fault rocks in experiments
,”
J. Geophys. Res.: Solid Earth
121
(
3
),
1677
1705
, (
2016
).
45.
Pec
,
M.
,
Stünitz
,
H.
,
Heilbronner
,
R.
,
Drury
,
M.
, and
de Capitani
,
C.
, “
Origin of pseudotachylites in slow creep experiments
,”
Earth Planet. Sci. Lett.
355-356
,
299
310
(
2012b
).
46.
Précigout
,
J.
,
Stünitz
,
H.
,
Pinquier
,
Y.
,
Champallier
,
R.
, and
Schubnel
,
A.
, “
High-pressure, high-temperature deformation experiment using the new generation Griggs-type apparatus
,”
J. Visualized Exp.
134
,
e56841
(
2018
).
47.
Rouet-Leduc
,
B.
,
Hulbert
,
C.
,
Lubbers
,
N.
,
Barros
,
K.
,
Humphreys
,
C. J.
, and
Johnson
,
P. A.
, “
Machine learning predicts laboratory earthquakes
,”
Geophys. Res. Lett.
44
(
18
),
9276
9282
, (
2017
).
48.
Rybacki
,
E.
,
Renner
,
J.
,
Konrad
,
K.
,
Harbott
,
W.
,
Rummel
,
F.
, and
Stöckhert
,
B.
, “
A servohydraulically-controlled deformation apparatus for rock deformation under conditions of ultra-high pressure metamorphism
,”
Pure Appl. Geophys.
152
(
3
),
579
606
(
1998
).
49.
Schubnel
,
A.
,
Brunet
,
F.
,
Hilairet
,
N.
,
Gasc
,
J.
,
Wang
,
Y.
, and
Green
,
H. W.
, “
Deep-focus earthquake analogs recorded at high pressure and temperature in the laboratory
,”
Science
341
(
6152
),
1377
1380
(
2013
).
50.
Schubnel
,
A.
,
Champallier
,
R.
,
Precigout
,
J.
,
Pinquier
,
Y.
,
Ferrand
,
T. P.
,
Incel
,
S.
 et al., “
GRAAL-Griggs-type apparatus equipped with acoustics in the laboratory: A new instrument to explore the rheology of rocks at high pressure
,” in
AGU Fall Meeting Abstracts
,
2015
.
51.
Stewart
,
E. D.
,
Holyoke
,
C. W.
 III
, and
Kronenberg
,
A. K.
, “
High pressure deformation experiments using solid confining media and Griggs piston-cylinder methods: Appraisal of stress and deformation in talc assemblies
,”
Tectonophysics
588
,
171
178
(
2013
).
52.
Tarantola
,
A.
,
Diamond
,
L.
,
Stünitz
,
H.
,
Thust
,
A.
, and
Pec
,
M.
, “
Modification of fluid inclusions in quartz by deviatoric stress. III: Influence of principal stresses on inclusion density and orientation
,”
Contrib. Mineral. Petrol.
164
(
3
),
537
550
(
2012
).
53.
Thompson
,
B. D.
,
Young
,
R. P.
, and
Lockner
,
D. A.
, “
Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite
,”
J. Geophys. Res.: Solid Earth
114
(
B2
),
B11403
, (
2009
).
54.
Tingle
,
T. N.
,
Green
,
H. W.
,
Young
,
T. E.
, and
Koczynski
,
T. A.
, “
Improvements to Griggs-type apparatus for mechanical testing at high pressures and temperatures
,”
Pure Appl. Geophys.
141
(
2-4
),
523
543
(
1993
).
55.
Tullis
,
T. E.
and
Tullis
,
J.
, “
Experimental rock deformation techniques
,” in
Mineral and Rock Deformation: Laboratory Studies
(
American Geophysical Union
,
Washington, DC
,
1986
), Vol. 36, pp.
297
324
.
56.
Vinogradov
,
A.
, “
On shear band velocity and the detectability of acoustic emission in metallic glasses
,”
Scr. Mater.
63
(
1
),
89
92
(
2010
).
57.
Vinogradov
,
A.
,
Vasilev
,
E.
,
Seleznev
,
M.
,
Máthis
,
K.
,
Orlov
,
D.
, and
Merson
,
D.
, “
On the limits of acoustic emission detectability for twinning
,”
Mater. Lett.
183
,
417
419
(
2016
).
58.
Wadley
,
H. N. G.
and
Mehrabian
,
R.
, “
Acoustic emission for materials processing: A review
,”
Mater. Sci. Eng.
65
(
2
),
245
263
(
1984
).
59.
Wang
,
Y.
,
Durham
,
W. B.
,
Getting
,
I. C.
, and
Weidner
,
D. J.
, “
The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa
,”
Rev. Sci. Instrum.
74
(
6
),
3002
3011
(
2003
).
60.
Wang
,
Y.
,
Zhu
,
L.
,
Shi
,
F.
,
Schubnel
,
A.
,
Hilairet
,
N.
,
Yu
,
T.
 et al., “
A laboratory nanoseismological study on deep-focus earthquake micromechanics
,”
Sci. Adv.
3
(
7
),
e1601896
(
2017
).
61.
Weiss
,
J.
and
Marsan
,
D.
, “
Three-dimensional mapping of dislocation avalanches: Clustering and space/time coupling
,”
Science
299
(
5603
),
89
92
(
2003
).
You do not currently have access to this content.