To obtain the cubical coefficients of thermal expansion of a mixed system of flaky dust and alkane liquid, the volume and pressure of the mixed system under different temperatures and volume fractions of aluminum powder were measured. On the basis of the experimental results, the cubical coefficients of thermal expansion under the corresponding conditions were calculated and the effect of each influencing factor was obtained. The results show that since the volume of each phase component in the system increases with temperature, the volume of the mixed system also increases with temperature. With increasing temperature, the cubical coefficients of thermal expansion of the mixed system generally increase. Affected by the increase in mass concentration of low-expansion-coefficient substances, an increase in the volume fraction of aluminum powder results in a decrease in the volume thermal expansion coefficient of the mixed system. At the same time, due to the changes in the state of the mixed system, the mass fraction of aluminum powder decreased sharply within a certain range. The low mass fraction of aluminum powder weakens the supporting effect of the metal particle skeleton, the thermal expansion properties of the liquid dominate the mixed system, and the volume thermal expansion coefficient is high. The high aluminum powder mass fraction creates the metal particle skeleton, the metal thermal expansion properties dominate the mixed system, and the volume thermal expansion coefficient is low.

1.
Y.
Zhang
,
W.
Cao
,
C.-M.
Shu
,
M.
Zhao
,
C.
Yu
,
Z.
Xie
,
J.
Liang
,
Z.
Song
, and
X.
Cao
, “
Dynamic hazard evaluation of explosion severity for premixed hydrogen–air mixtures in a spherical pressure vessel
,”
Fuel
261
,
116433
(
2020
).
2.
W.
Cao
,
Q.
Qin
,
W.
Cao
,
Y.
Lan
,
T.
Chen
,
S.
Xu
, and
X.
Cao
, “
Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel
,”
Powder Technol.
310
,
17
23
(
2017
).
3.
W.
Liu
,
C.
Bai
,
Q.
Liu
, and
J.
Yao
, “
A study on the influencing factors and trends of the falling extra-fine aluminium flake dust generation rate
,”
Powder Technol.
369
,
88
95
(
2020
).
4.
W.
Liu
,
C.
Bai
,
Q.
Liu
, and
J.
Yao
, “
Study on the effect of temperature on the gas–liquid mass transfer rate of volatile liquid
,”
Eur. Phys. J. Plus
135
(
6
),
437
(
2020
).
5.
B.
Zhang
,
H.
Liu
,
B.
Yan
, and
H. D.
Ng
, “
Experimental study of detonation limits in methane-oxygen mixtures: Determining tube scale and initial pressure effects
,”
Fuel
259
,
116220
(
2020
).
6.
G.
Atkinson
,
E.
Cowpe
,
J.
Halliday
, and
D.
Painter
, “
A review of very large vapour cloud explosions: Cloud formation and explosion severity
,”
J. Loss Prev. Process Ind.
48
,
367
375
(
2017
).
7.
N. U.
Muhammad
,
N. M.
Shakir
,
M. M.
Bin
, and
M.
Imran
, “
A parametric study to investigate human injury and fatality due to vapor cloud explosion
,” in
MATEC Web of Conferences
(
EDP Sciences
,
2018
), Vol. 225, p.
5009
.
8.
D. M.
Johnson
,
G. B.
Tomlin
, and
D. G.
Walker
, “
Detonations and vapor cloud explosions: Why it matters
,”
J. Loss Prev. Process Ind.
36
,
358
364
(
2015
).
9.
J. L.
Fortier
,
M. A.
Simard
,
P.
Picker
, and
C.
Jolicoeur
, “
Direct continuous measurements of thermal expansion coefficients of liquids and solids using flow microcalorimetry
,”
Rev. Sci. Instrum.
50
(
11
),
1474
1480
(
1979
).
10.
H.
Craubner
, “
Densitometer for absolute measurements of the temperature dependence of density, partial volumes, and thermal expansivity of solids and liquids
,”
Rev. Sci. Instrum.
57
(
11
),
2817
2826
(
1986
).
11.
Q. M.
Omar
,
J.-N.
Jaubert
, and
J. A.
Awan
, “
Densities, apparent molar volume, expansivities, Hepler’s constant, and isobaric thermal expansion coefficients of the binary mixtures of piperazine with water, methanol, and acetone at T = 293.15 to 328.15 K
,”
Int. J. Chem. Eng.
2018
,
1
10
.
12.
O.
Kiyohara
,
P. J.
D’Arcy
, and
G. C.
Benson
, “
Thermal expansivities of water + tetrahydrofuran mixtures at 298.15 K
,”
Can. J. Chem.
56
(
22
),
2803
2807
(
1978
).
13.
H.
Iloukhani
,
M.
Habibi
, and
K.
Khanlarzadeh
, “
Excess molar volumes, viscosity deviations and excess thermal expansion coefficients for binary and ternary mixtures consist of diethylketone + 2-butanol + ethylchloroacetate at (298.15, 308.15 and 318.15) K
,”
Thermochim. Acta
563
,
67
71
(
2013
).
14.
G. I.
Egorov
,
D. M.
Makarov
, and
A. M.
Kolker
, “
Liquid phase PVTx properties of binary mixtures of (water + ethylene glycol) in the range from 278.15 to 323.15 K and from 0.1 to 100 MPa. II. Molar isothermal compressions, molar isobaric expansions, thermal pressure coefficients and internal pressure
,”
Fluid Phase Equilib.
354
,
133
146
(
2013
).
15.
E.
Dickinson
,
L. J.
Thrift
, and
L.
Wilson
, “
Thermal expansion and shear viscosity coefficients of water + ethanol + sucrose mixtures
,”
J. Chem. Eng. Data
25
(
3
),
234
236
(
1980
).
16.
K.
Tamura
, “
Excess thermal expansion factors of polar mixtures and aqueous solutions
,”
J. Therm. Anal. Calorim.
57
(
3
),
759
763
(
1999
).
17.
G. I.
Egorov
and
D. M.
Makarov
, “
Densities and molar isobaric thermal expansions of the water + formamide mixture over the temperature range from 274.15 to 333.15 K at atmospheric pressure
,”
J. Chem. Eng. Data
62
(
4
),
1247
1256
(
2017
).
18.
V.
Oddone
,
B.
Boerner
, and
S.
Reich
, “
Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity
,”
Sci. Technol. Adv. Mater.
18
(
1
),
180
186
(
2017
).
19.
S.
Roy
,
K. G.
Schell
,
E. C.
Bucharsky
,
K. A.
Weidenmann
,
A.
Wanner
, and
M. J.
Hoffmann
, “
Processing and characterization of elastic and thermal expansion behaviour of interpenetrating Al12Si/alumina composites
,”
Mater. Sci. Eng. A
743
,
339
348
(
2019
).
20.
Y.
Ma
and
Y.
Sun
, “
Multiferroic and thermal expansion properties of metal-organic frameworks
,”
J. Appl. Phys.
127
(
8
),
1
9
(
2020
).
21.
M. K.
Gupta
,
R.
Mittal
, and
S. L.
Chaplot
, “
Negative thermal expansion behavior in orthorhombic Sc2(MoO4)3 and Sc2(WO4)3
,”
J. Appl. Phys.
126
(
12
),
125114
(
2019
).
22.
D.
Gehring
,
J. A.
Monroe
, and
I.
Karaman
, “
Effects of composition on the mechanical properties and negative thermal expansion in martensitic TiNb alloys
,”
Scr. Mater.
178
,
351
355
(
2020
).
23.
V. N.
Guskov
,
A. V.
Khoroshilov
,
M. A.
Ryumin
,
O. N.
Kondrat’eva
,
A. V.
Guskov
, and
K. S.
Gavrichev
, “
Thermal expansion and thermodynamic properties of M′-YbTaO4 ceramics
,”
Ceram. Int.
46
(
4
),
5402
5406
(
2020
).
24.
Z. K.
Murlieva
,
D. K.
Palchaev
,
M. E.
Iskhakov
,
M. K.
Rabadanov
, and
U. U.
Bagomedova
, “
Thermal expansion and electrical resistivity of the intermetallic compound Ti67Al33
,”
High Temp.
57
(
2
),
182
185
(
2019
).
25.
W.
Liang
,
L.
Li
,
R.
Li
,
Y.
Yin
,
Z. M.
Li
,
X. Q.
Liu
,
S. M.
Shan
,
Y.
He
,
Y.
Meng
,
Z. S.
Li
, and
H. P.
Li
, “
Crystal structure of impurity-free rhodochrosite (MnCO3) and thermal expansion properties
,”
Phys. Chem. Miner.
47
(
2
),
1
11
(
2020
).
26.
J.-b.
Zhao
,
X.-h.
Fan
,
B.
Li
,
K.
Yang
,
Y.-l.
Kong
, and
Z.
Wang
, “
Microstructure and thermal expansion of copper-based amorphous alloys during structural relaxation
,”
Chin. Foundry
17
(
1
),
8
14
(
2020
).
27.
X.-L.
Wang
and
D.-Y.
Bai
, “
Thermal expansion and thermal fluctuation effects in a binary granular mixture
,”
Int. J. Heat Mass Transfer
116
,
84
92
(
2018
).
28.
E.
Plevova
,
L.
Vaculikova
,
A.
Kozusnikova
,
M.
Ritz
, and
G.
Simha Martynkova
, “
Thermal expansion behaviour of granites
,”
J. Therm. Anal. Calorim.
123
(
2
),
1555
1561
(
2016
).
29.
M.
Kaung
and
R.
Thanate
, “
Coefficient of thermal expansion of rubberwood (Hevea brasiliensis) in convective drying process
,”
J. Trop. For. Sci.
32
(
1
),
72
82
(
2020
).
30.
Y. A.
Freiman
,
V. V.
Vengerovsky
, and
A. F.
Goncharov
, “
The effect of pressure on the negative thermal expansion of solid methane
,”
Low Temp. Phys.
46
(
2
),
177
180
(
2020
).
31.
D. Y.
Kovalev
,
S. P.
Shilkin
,
S. V.
Konovalikhin
,
G. V.
Kalinnikov
,
I. I.
Korobov
,
S. E.
Kravchenko
,
N. Y.
Khomenko
, and
R. A.
Andrievskii
, “
Thermal expansion of micro- and nanocrystalline HfB2
,”
High Temp.
57
(
1
),
32
36
(
2019
).
32.
V.
Pet’kov
,
D.
Lavrenov
, and
A.
Kovalsky
, “
Synthesis, characterization and thermal expansion of the zinc-containing phosphates with the mineral-like framework structures
,”
J. Therm. Anal. Calorim.
139
(
3
),
1791
1798
(
2020
).
33.
S.
Henke
,
A.
Schneemann
, and
R. A.
Fischer
, “
Massive anisotropic thermal expansion and thermo-responsive breathing in metal-organic frameworks modulated by linker functionalization
,”
Adv. Funct. Mater.
23
(
48
),
5990
5996
(
2013
).
34.
R. L.
David
,
CRC Handbook of Chemistry and Physics
, 87th ed. (
CRC Press
,
Boca Raton
,
2005
).
35.
D.
Pecar
and
V.
Dolecek
, “
Isothermal compressibilities and isobaric expansibilities of pentane, hexane, heptane and their binary and ternary mixtures from density measurements
,”
Fluid Phase Equilib.
211
(
1
),
109
127
(
2003
).
36.
J.
Wisniak
,
R.
Peralta
,
R.
Infante
,
G.
Cortez
, and
R. G.
Lopez
, “
Densities, isobaric thermal compressibilities and derived thermodynamic properties of the binary systems of cyclohexane with allyl methacrylate, butyl methacrylate, methacrylic acid, and vinyl acetate at t = (298.15 and 308.15) K
,”
Thermochim. Acta
437
(
1-2
),
1
6
(
2005
).
37.
J. S.
Matos
,
J. L.
Trenzado
,
E.
González
, and
R.
Alcalde
, “
Volumetric properties and viscosities of the methyl butanoate + n-heptane + n-octane ternary system and its binary constituents in the temperature range from 283.15 to 313.15 K
,”
Fluid Phase Equilib.
186
(
1
),
207
234
(
2001
).
38.
G. S.
James
,
Lange’s Handbook of Chemistry
, 16th ed. (
McGraw-Hill
,
2005
).
You do not currently have access to this content.