Ultrasound atomic force microscopy (AFM) has received considerable interest due to its subsurface imaging capabilities, particularly for nanostructure imaging. The local contact stiffness variation due to the presence of a subsurface feature is the origin of the imaging contrast. Several research studies have demonstrated subsurface imaging capabilities with promising resolution. However, there is limited literature available about the definition of spatial resolution in subsurface AFM. The changes in contact stiffness and their link to the subsurface resolution are not well understood. We propose a quantitative approach to assess the resolution in subsurface AFM imaging. We have investigated the influences of several parameters of interest on the lateral resolution. The quantification of the subsurface feature size can be based on threshold criteria (full width at half maximum and Rayleigh criteria). Simulations and experimental measurements were compared, revealing that the optimal choice of parameter settings for surface topography AFM is suboptimal for subsurface AFM imaging.

1.
G.
Binning
,
C.
Quate
, and
C.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
2.
H.
Sadeghian
,
R.
Herfst
,
B.
Dekker
,
J.
Winters
,
T.
Bijnagte
, and
R.
Rijnbeek
,
Rev. Sci. Instrum.
88
,
033703
(
2017
).
3.
C. A. J.
Putman
,
B. G.
De Grooth
,
N. F.
Van Hulst
, and
J.
Greve
,
J. Appl. Phys.
72
,
6
(
1992
).
4.
R. W.
Herfst
,
W. A.
Klop
,
M.
Eschen
,
T. C.
van den Dool
,
N. B.
Koster
, and
H.
Sadeghian
,
Measurement
56
,
104
(
2014
).
5.
H.
Sadeghian
,
R.
Herfst
,
J.
Winters
,
W.
Crowcombe
,
G.
Kramer
,
T.
van den Dool
, and
M. H.
van Es
,
Rev. Sci. Instrum.
86
,
113706
(
2015
).
6.
D. A. H.
Hanaor
,
Y.
Gan
, and
I.
Einav
,
Int. J. Solids Struct.
59
,
121
(
2015
).
7.
J. A.
Turner
and
J. S.
Wiehn
,
Nanotechnology
12
,
322
(
2001
).
8.
NT-MDT Spectrum Instruments, Ultimate resolution in contact mode, https://www.ntmdt-si.com/spm-basics/view/effect-tip-radius-cone-angle, 2015; accessed March 23, 2017.
9.
Z.-g.
Zeng
,
G.-d.
Zhu
,
Z.
Guo
,
L.
Zhang
,
X.-j.
Yan
,
Q.-g.
Du
, and
R.
Liu
,
Ultramicroscopy
108
,
975
(
2008
).
10.
K.
Yamanaka
,
H.
Ogiso
, and
O.
Kolosov
,
Appl. Phys. Lett.
64
,
178
(
1994
).
11.
U.
Rabe
,
S.
Amelio
,
E.
Kester
,
V.
Scherer
,
S.
Hirsekorn
, and
W.
Arnold
,
Ultrasonics
38
,
430
(
2000
).
12.
A.
Striegler
,
B.
Koehler
,
B.
Bendjus
,
M.
Roellig
,
M.
Kopycinska-Mueller
, and
N.
Meyendorf
,
Ultramicroscopy
111
,
1405
(
2011
).
13.
U.
Rabe
,
J.
Turner
, and
W.
Arnold
,
Appl. Phys. A
66
,
S277
(
1998
).
14.
K.
Kimura
,
K.
Kobayashi
,
K.
Matsushige
, and
H.
Yamada
,
Ultramicroscopy
133
,
41
(
2013
).
15.
D.
Passeri
,
A.
Bettucci
, and
M.
Rossi
,
Anal. Bioanal. Chem.
396
,
2769
(
2010
).
16.
M. H.
van Es
,
A.
Mohtashami
,
R. M. T.
Thijssen
,
D.
Piras
,
P. L. M. J.
van Neer
, and
H.
Sadeghian
,
Ultramicroscopy
184
,
209
(
2018
).
17.
F.
Dinelli
,
P.
Pingue
,
N. D.
Kay
, and
O. V.
Kolosov
,
Nanotechnology
28
,
085706
(
2017
).
18.
C.-J.
Su
,
T.-I.
Tsai
,
Y.-L.
Liou
,
Z.-M.
Lin
,
H.-C.
Lin
, and
T.-S.
Chao
,
IEEE Electron Device Lett.
32
,
521
(
2011
).
19.
Z.
Parlak
and
L. F.
Degertekin
, in
Acoustic Scanning Probe Microscopy
, edited by
F.
Marinello
,
D.
Passeri
, and
E.
Savio
(
Springer-Verlag
,
Berlin
,
2013
), Chap. 15, pp.
417
436
.
20.
D.
Piras
and
H.
Sadeghian
,
J. Phys. D: Appl. Phys.
50
,
235601
(
2017
).
21.
G.
Stan
,
S. W.
King
, and
R. F.
Cook
,
Nanotechnology
23
,
215703
(
2012
).
22.
G.
Stan
and
S. D.
Solares
,
Beilstein J. Nanotechnol.
5
,
278
(
2014
).
23.
G. G.
Yaralioglu
,
F. L.
Degertekin
,
K. B.
Crozier
, and
C. F.
Quate
,
J. Appl. Phys.
87
,
7491
(
2000
).
24.
D. L.
Sedin
and
K. L.
Rowlen
,
Appl. Surf. Sci.
182
,
40
(
2001
).
25.
M.
Kopycynska Muller
,
R. H.
Geiss
, and
D.
Hurley
,
Ultrasound
106
,
466
(
2005
).
26.
J.
Lübb
,
M.
Temmen
,
P.
Rahe
,
A.
Künle
, and
M.
Reichling
,
Beilstein J. Nanotechnol.
4
,
227
(
2013
).
27.
H.
Hertz
,
Miscellaneous Papers
(
MacMillan and Co.
,
London, UK
,
1896
).
28.
A.
Gouldstone
,
N.
Chollacoop
,
M.
Dao
,
J.
Li
,
A.
Minor
, and
Y.
Shen
,
Acta Mater.
55
,
4015
(
2007
).
29.
Z.
Parlak
and
F. L.
Degertekin
,
J. Appl. Phys.
103
,
114910
(
2008
).
30.
J. P.
Killgore
,
J. Y.
Kelly
,
C. M.
Stafford
,
M. J.
Fasolka
, and
D. C.
Hurley
,
Nanotechnology
22
,
175706
(
2011
).
31.
J.
Fu
and
F.
Li
,
Med. Phys.
40
,
123502
(
2013
).
32.
D.
Piras
,
J.
de Vreugd
, and
H.
Sadeghian
, in
Proceedings of 13th International Workshop on Nanomechanical Sensing NMC
,
2016
.
33.
R.
Cobbold
,
Foundations of Biomedical Ultrasound
(
Oxford University Press
,
New York
,
2007
).
34.
T.
Szabo
,
Diagnostic Ultrasound Imaging: Inside Out
(
Elsevier Academic Press
,
Burlington, MA
,
2004
).
35.
J. A.
Jensen
,
J. Acoust. Soc. Am.
89
,
182
(
1991
).
36.
J.
Jensen
, in
2013 IEEE International Ultrasonics Symposium (IUS)
(
IEEE
,
2013
), pp.
29
32
.
37.
S.
van Aert
,
D.
Van Dyck
, and
A.
den Dekker
,
Opt. Express
14
,
3830
(
2006
).
38.
A.
Hammiche
,
H.
Pollock
,
M.
Song
, and
D.
Hourston
,
Meas. Sci. Technol.
7
,
142
(
2006
).
39.
D.
Piras
,
P.
Neer
,
M.
van Es
, and
H.
Sadeghian
, AFM-subsurface imaging enhancement cantilever design, European patent application 17164817.3 (
2018
).
40.
D.
Piras
,
P.
Neer
,
M.
van Es
, and
H.
Sadeghian
, European patent application 17167754.5 (
2018
).
41.
J.
Ophir
,
S. K.
Alam
,
B. S.
Garra
,
F.
Kallel
,
E. E.
Konofagou
,
T.
Krouskop
,
C. R. B.
Merritt
,
R.
Righetti
,
R.
Souchon
,
S.
Srinivasan
, and
T.
Varghese
,
J. Med. Ultrason.
29
,
155
(
2002
).
You do not currently have access to this content.