To facilitate the development of molten salt reactor technologies, a fundamental understanding of the physical and chemical properties of molten salts under the combined conditions of high temperature and intense radiation fields is necessary. Optical spectroscopic (UV–Vis–near IR) and electrochemical techniques are powerful analytical tools to probe molecular structure, speciation, thermodynamics, and kinetics of solution dynamics. Here, we report the design and fabrication of three custom-made apparatus: (i) a multi-port spectroelectrochemical furnace equipped with optical spectroscopic and electrochemical instrumentation, (ii) a high-temperature cell holder for time-resolved optical detection of radiolytic transients in molten salts, and (iii) a miniaturized spectroscopy furnace for the investigation of steady-state electron beam effects on molten salt speciation and composition by optical spectroscopy. Initial results obtained with the spectroelectrochemical furnace (i) and high-temperature cell holder (ii) are reported.

1.
D. T.
Ingersoll
,
Small Modular Reactors: Nuclear Power Fad or Future?
(
Woodhead Publishing
,
2015
).
2.
M. D.
Carelli
and
D. T.
Ingersoll
,
Handbook of Small Modular Nuclear Reactors
(
Elsevier
,
2014
).
3.
P. N.
Haubenreich
and
J. R.
Engel
, “
Experience with the molten-salt reactor experiment
,”
Nucl. Appl. Technol.
8
(
2
),
118
136
(
1970
).
4.
W. R.
Grimes
, “
Chemical research and development for molten-salt breeder reactors
,” ORNL-TM-1853,
1967
.
5.
I. E.
Makarov
,
T. N.
Zhukova
,
A. K.
Pikaev
, and
V. I.
Spitsyn
, “
Oxidizing agents produced by radiolysis of alkali-metal halide melts
,”
Bull. Acad. Sci. USSR, Div. Chem. Sci.
31
(
4
),
662
666
(
1982
).
6.
A. K.
Pikaev
,
I. E.
Makarov
, and
T. N.
Zhukova
, “
Solvated electron in irradiated melts of alkaline halides
,”
Radiat. Phys. Chem.
19
(
5
),
377
387
(
1982
).
7.
I. E.
Makarov
,
T. N.
Zhukova
, and
A. K.
Pikaev
, “
Transient species in radiolysis of melted alkali metal halides
,”
Radiat. Eff.
22
(
1
),
71
72
(
1974
).
8.
H.
Hagiwara
,
S.
Sawamura
,
T.
Sumiyoshi
, and
M.
Katayama
, “
Pulse radiolysis study of transient species in LiCl-KCl melt
,”
Int. J. Radiat. Appl. Instrum., Part C
30
(
2
),
141
144
(
1987
).
9.
R. A.
Peterson
 et al., “
Review of the scientific understanding of radioactive waste at the U.S. DOE Hanford site
,”
Environ. Sci. Technol.
52
,
381
396
(
2018
).
10.
B. B. J.
Mincher
and
S. P.
Mezyk
, “
Radiation chemical effects on radiochemistry: A review of examples important to nuclear power
,”
Radiochim. Acta
97
,
519
534
(
2009
).
11.
G. V.
Buxton
,
C. L.
Greenstock
,
W. P.
Helman
, and
A. B.
Ross
, “
Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution
,”
J. Phys. Chem. Ref. Data
17
(
2
),
513
886
(
1988
).
12.
B. J.
Mincher
and
J. F.
Wishart
, “
The radiation chemistry of ionic liquids: A review
,”
Solvent Extr. Ion Exch.
32
(
6
),
563
583
(
2014
).
13.
J.
Brynestad
,
C. R.
Boston
, and
G. P.
Smith
, “
Electronic spectra and coordination of nickel centers in liquid lithium chloride–potassium chloride mixtures
,”
J. Chem. Phys.
47
(
9
),
3179
3189
(
1967
).
14.
A. K.
Plkaev
,
B. G.
Ershov
, and
I. E.
Makarov
, “
Influence of the nature of a matrix on the reactivity of electrons in irradiated systems
,”
J. Phys. Chem.
79
(
26
),
3025
3034
(
1975
).
15.
G. P.
Smith
,
D. W.
James
, and
C. R.
Boston
, “
Optical spectra of TI+, Pb2+, and Bi3+ in the molten lithium chloride–potassium chloride eutectic
,”
J. Chem. Phys.
42
(
6
),
2249
2250
(
1965
).
16.
A.
Merwin
,
W. C.
Phillips
,
M. A.
Williamson
,
J. L.
Willit
,
P. N.
Motsegood
, and
D.
Chidambaram
, “
Presence of Li clusters in molten LiCl-Li
,”
Sci. Rep.
6
,
25435
(
2016
).
17.
F.
Lantelme
and
H.
Groult
,
Molten Salts Chemistry
(
Elsevier, Inc.
,
2013
).
18.
K. E.
Johnson
, “
Ligand field stabilization in molten salts: Spectrochemical and nephelauxetic series
,”
Electrochim. Acta
11
(
2
),
129
(
1966
).
19.
M.
Hatanaka
and
S.
Yabushita
, “
Mechanisms of f–f hypersensitive transition intensities of lanthanide trihalide molecules: A spin–orbit configuration interaction study
,”
Theor. Chem. Acc.
133
(
8
),
1517
(
2014
).
20.
D. M.
Gruen
and
R. L.
Mcbeth
, “
Oxidation states and complex ions of uranium in fused chlorides and nitrates
,”
J. Inorg. Nucl. Chem.
9
,
290
301
(
1959
).
21.
B. R.
Sundheim
and
J.
Greenberg
, “
High temperature modification of the Beckman DU spectrophotometer
,”
Rev. Sci. Instrum.
27
(
9
),
703
704
(
1956
).
22.
J.
Greenberg
and
L. J.
Hallgren
, “
Techniques for measuring the infrared absorption spectra of fused salts
,”
Rev. Sci. Instrum.
31
(
4
),
444
445
(
1960
).
23.
C. A.
Schroll
,
S.
Chatterjee
,
T. G.
Levitskaia
,
W. R.
Heineman
, and
S. A.
Bryan
, “
Electrochemistry and spectroelectrochemistry of europium(III) chloride in 3LiCl–2KCl from 643 to 1123 K
,”
Anal. Chem.
85
,
9924
9931
(
2013
).
24.
B. Y.
Kim
,
D. H.
Lee
,
J.-Y.
Lee
, and
J.-I.
Yun
, “
Electrochemical and spectroscopic investigations of Tb(III) in molten LiCl–KCl eutectic at high temperature
,”
Electrochem. Commun.
12
(
8
),
1005
1008
(
2010
).
25.
M.
Taube
and
J.
Ligou
, “
Molten chlorides for fast breeder reactor problems and possibilities
,” Eidg. Institut fur Reaktorforschung Wureniingen Schweiz Report No. EIR-Bericht Nr.215,
1972
.
26.
O.
Beneš
and
R. J. M.
Konings
,
Molten Salt Reactor Fuel and Coolant
(
Elsevier
,
2012
), Vol. 3.
27.
Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing for General Service, ASTM A269.
28.
J. F.
Wishart
,
A. R.
Cook
, and
J. R.
Miller
, “
The LEAF picosecond pulse radiolysis facility at Brookhaven National Laboratory
,”
Rev. Sci. Instrum.
75
(
11
),
4359
4366
(
2004
).
29.
A. R.
Cook
and
Y.
Shen
, “
Optical fiber-based single-shot picosecond transient absorption spectroscopy
,”
Rev. Sci. Instrum.
80
(
7
),
073106
(
2009
).
30.
D. C.
Grills
,
J. A.
Farrington
,
B. H.
Layne
,
J. M.
Preses
,
H. J.
Bernstein
, and
J. F.
Wishart
, “
Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility
,”
Rev. Sci. Instrum.
86
(
4
),
044102
(
2015
).
31.
D. M.
Gruen
and
R. L.
McBeth
, “
The coordination chemistry of 3D transition metal ions in fused salt solutions
,”
Pure Appl. Chem.
6
(
1
),
23
48
(
1963
).
32.
M. V.
Smirnov
and
A. M.
Potapov
, “
Redox potentials and electronic absorption spectra of dilute solutions of nickel and chromium chlorides in molten alkali chlorides
,”
Electrochim. Acta
39
(
1
),
143
149
(
1994
).
33.
A. S.
Basin
,
A. B.
Kaplun
,
A. B.
Meshalkin
, and
N. F.
Uvarov
, “
The LiCl–KCl binary system
,”
Russ. J. Inorg. Chem.
53
(
9
),
1509
1511
(
2008
).
34.
H.-C.
Eun
,
H.-C.
Yang
,
Y.-J.
Cho
,
H.-S.
Park
,
E.-H.
Kim
, and
I.-T.
Kim
, “
Separation of pure LiCl-KCl eutectic salt from a mixture of LiCl-KCl eutectic salt and rare-earth precipitates by vacuum distillation
,”
J. Nucl. Sci. Technol.
44
(
10
),
1295
1300
(
2007
).
35.
B. Y.
Kim
and
J.-I.
Yun
, “
Temperature effect on fluorescence and UV-vis absorption spectroscopic properties of Dy(III) in molten LiCl–KCl eutectic salt
,”
J. Lumin.
132
(
11
),
3066
3071
(
2012
).
36.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods: Fundamentals and Applications
(
John Wiley & Sons, Inc.
,
2001
).
37.
M. R.
Shaltry
,
R. O.
Hoover
, and
G. L.
Fredrickson
,
J. Electrochem. Soc.
167
(
11
),
116502
(
2020
).
38.
A.
Cotarta
,
J.
Bouteillon
, and
J. C.
Poignet
, “
Electrochemistry of molten LiCl–KCl–CrCl3 and LiCl–KCl–CrCl2 mixtures
,”
J. Appl. Electrochem.
27
(
6
),
651
658
(
1997
).
39.
G. P.
Smith
, “
Review of electronic absorption spectra of molten salts
,” ORNL-3411,
1963
.
40.
G. V.
Buxton
and
C. R.
Stuart
, “
Re-evaluation of the thiocyanate dosimeter for pulse radiolysis
,”
J. Chem. Soc. Faraday Trans.
91
(
2
),
279
281
(
1995
).
41.
J. F.
Wishart
,
A. M.
Funston
,
T.
Szreder
,
A. R.
Cook
, and
M.
Gohdo
, “
Electron solvation dynamics and reactivity in ionic liquids observed by picosecond radiolysis techniques
,”
Faraday Discuss.
154
,
353
363
(
2012
).
42.
D.
Nattland
,
T.
Rauch
, and
W.
Freyland
, “
Electron localization in metal–molten salt solutions: An optical study with in situ variation of composition
,”
J. Chem. Phys.
98
(
6
),
4429
4436
(
1993
).
43.
J. F.
Wishart
and
P.
Neta
, “
Spectrum and reactivity of the solvated electron in the ionic liquid methyltributylammonium bis(trifluoromethylsulfonyl)imide
,”
J. Phys. Chem. B
107
(
30
),
7261
7267
(
2003
).
44.
T.
Kondoh
 et al., “
Pulse radiolysis study of ion-species effects on the solvated electron in alkylammonium ionic liquids
,”
Radiat. Phys. Chem.
78
(
12
),
1157
1160
(
2009
).
45.
A. M.
Funston
and
J. F.
Wishart
, “
Dynamics of fast reactions in ionic liquids
,” in
Ionic Liquids III A: Fundamentals, Progress, Challenges, and Opportunities
, edited by
R. D.
Rogers
and
K. R.
Seddon
(
American Chemical Society
,
Washington
,
2005
), Vol. 901, pp.
102
116
.
You do not currently have access to this content.