Retrieving the spectrum of physical radiation from experimental measurements typically involves using a mathematical algorithm to deconvolve the instrument response function from the measured signal. However, in the field of signal processing known as “Source Separation” (SS), which refers to the process of computationally retrieving the separate source components that generate an overlapping signal on the detector, the deconvolution process can become an ill-posed problem and crosstalk complicates the separation of the individual sources. To overcome this problem, we have designed a magnetic spectrometer for inline electron energy spectrum diagnosis and developed an analysis algorithm using techniques applicable to the problem of SS. An unknown polychromatic electron spectrum is calculated by sparse coding using a Gaussian basis function and an L1 regularization algorithm with a sparsity constraint. This technique is verified by using a specially designed magnetic field electron spectrometer. We use Monte Carlo simulations of the detector response to Maxwellian input energy distributions with electron temperatures of 5.0 MeV, 10.0 MeV, and 15.0 MeV to show that the calculated sparse spectrum can reproduce the input spectrum with an optimum energy bin width automatically selected by the L1 regularization. The spectra are reproduced with a high accuracy of less than 4.0% error, without an initial value. The technique is then applied to experimental measurements of intense laser accelerated electron beams from solid targets. Our analysis concept of spectral retrieval and automatic optimization of energy bin width by sparse coding could form the basis of a novel diagnostic method for spectroscopy.

1.
J. O.
Deasy
,
P. R.
Almond
,
M. T.
McEllistrem
, and
C. K.
Ross
, “
A simple magnetic spectrometer for radiotherapy electron beams
,”
Med. Phys.
21
(
11
),
1703
1714
(
1994
).
2.
F.
Gobet
,
J.
Caron
,
I.
Bessieres
,
T.
Bonnet
,
M. M.
Aléonard
,
M.
Antoine
,
P.
Barberet
,
M.
Comet
,
D.
Denis-Petit
,
J. L.
Feugeas
,
F.
Hannachi
,
S.
Hulin
,
G.
Kantor
,
P.
Nicolai
,
J. J.
Santos
,
M.
Tarisien
,
V.
Tikhonchuk
, and
M.
Versteegen
, “
Experimental and Monte Carlo absolute characterization of a medical electron beam using a magnetic spectrometer
,”
Radiat. Meas.
86
,
16
23
(
2016
).
3.
D. J.
McLaughlin
,
K. R.
Hogstrom
,
R. L.
Carver
,
J. P.
Gibbons
,
P. M.
Shikhaliev
,
K. L.
Matthews
 II
,
T.
Clarke
,
A.
Henderson
, and
E. P.
Liang
, “
Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators
,”
Med. Phys.
42
(
9
),
5517
5529
(
2015
).
4.
J.
Faure
,
Y.
Glinec
,
A.
Pukhov
,
S.
Kiselev
,
S.
Gordienko
,
E.
Lefebvre
,
J.-P.
Rousseau
,
F.
Burgy
, and
V.
Malka
, “
A laser-plasma accelerator producing monoenergetic electron beams
,”
Nature
431
,
541
544
(
2004
).
5.
H.
Chen
,
A. J.
Link
,
R.
van Maren
,
P. K.
Patel
,
R.
Shepherd
,
S. C.
Wilks
, and
P.
Beiersdorfer
, “
High performance compact magnetic spectrometers for energetic ion and electron measurement in ultraintense short pulse laser solid interactions
,”
Rev. Sci. Instrum.
79
,
10E533
(
2008
).
6.
K.
Nakamura
,
W.
Wan
,
N.
Ybarrolaza
,
D.
Syversrud
,
J.
Wallig
, and
W. P.
Leemans
, “
Broadband single-shot electron spectrometer for GeV-class laser-plasma-based accelerators
,”
Rev. Sci. Instrum.
79
,
053301
(
2008
).
7.
D.
Taylor
,
E.
Liang
,
T.
Clarke
,
A.
Henderson
,
P.
Chaguine
,
X.
Wang
,
G.
Dyer
,
K.
Serratto
,
N.
Riley
,
M.
Donovan
, and
T.
Ditmire
, “
Hot electron production using the Texas petawatt laser irradiating thick gold targets
,”
High Energy Density Phys.
9
(
2
),
363
368
(
2013
).
8.
E.
Liang
,
T.
Clarke
,
A.
Henderson
,
W.
Fu
,
W.
Lo
,
D.
Taylor
,
P.
Chaguine
,
S.
Zhou
,
Y.
Hua
,
X.
Cen
,
X.
Wang
,
J.
Kao
,
H.
Hasson
,
G.
Dyer
,
K.
Serratto
,
N.
Riley
,
M.
Donovan
, and
T.
Ditmire
, “
High e+/e ratio dense pair creation with 1021 W.cm−2 laser irradiating solid targets
,”
Sci. Rep.
5
,
13968
(
2015
).
9.
N.
Rabhi
,
K.
Bohacek
,
D.
Batani
,
G.
Boutoux
,
J.-E.
Ducret
,
E.
Guillaume
,
K.
Jakubowska
,
C.
Thaury
, and
I.
Thfoin
, “
Calibration of imaging plates to electrons between 40 and 180 MeV
,”
Rev. Sci. Instrum.
87
,
053306
(
2016
).
10.
C.
Gahn
,
G. D.
Tsakiris
,
K. J.
Witte
,
P.
Thirolf
, and
D.
Habs
, “
A novel 45-channel electron spectrometer for high intensity laser-plasma interaction studies
,”
Rev. Sci. Instrum.
71
,
1642
(
2000
).
11.
O. V.
Gotchev
,
P.
Brijesh
,
P. M.
Nilson
,
C.
Stoeckl
, and
D. D.
Meyerhofer
, “
A compact, multiangle electron spectrometer for ultraintense laser-plasma interaction experiments
,”
Rev. Sci. Instrum.
79
,
053505
(
2008
).
12.
I. J.
Das
,
C.-W.
Cheng
,
R. J.
Watts
,
A.
Ahnesjö
,
J.
Gibbons
,
X. A.
Li
,
J.
Lowenstein
,
R. K.
Mitra
,
W. E.
Simon
, and
T. C.
Zhu
, “
Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the therapy physics committee of the AAPM
,”
Med. Phys.
35
(
9
),
4186
4215
(
2008
).
13.
D. L.
Donoho
, “
Compressed sensing
,”
IEEE Trans. Inf. Theory
52
,
1289
1306
(
2006
).
14.
M.
Lustig
,
D.
Donoho
, and
J. M.
Pauly
, “
Sparse MRI: The application of compressed sensing for rapid MR imaging
,”
Magn. Reson. Med.
58
,
1182
1195
(
2007
).
15.
S.
Hugelier
,
J. J.
de Rooi
,
R.
Bernex
,
D.
Sam
,
O.
Devos
,
M.
Sliwa
,
P.
Dedecker
,
P. H. C.
Eilers
, and
C.
Ruckebusch
, “
Sparse deconvolution of highdensity super-resolution images
,”
Sci. Rep.
6
,
21413
(
2016
).
16.
S.
Maddali
,
I.
Calvo-Almazan
,
J.
Almer
,
P.
Kenesei
,
J.-S.
Park
,
R.
Harder
,
Y.
Nashed
, and
S. O.
Hruszkewycz
, “
Sparse recovery of undersampled intensity patterns for coherent diffraction imaging at high X-ray energies
,”
Sci. Rep.
8
,
4959
(
2018
).
17.
C. M.
Bishop
,
Pattern Recognition and Machine Learning
(
Springer-Verlag
,
New York
,
2007
).
18.
T.
Sato
,
Y.
Iwamoto
,
S.
Hashimoto
,
T.
Ogawa
,
T.
Furuta
,
S.-i.
Abe
,
T.
Kai
,
P.-E.
Tsai
,
N.
Matsuda
,
H.
Iwase
,
N.
Shigyo
,
L.
Sihver
, and
K.
Niita
, “
Features of particle and heavy ion transport code system (PHITS) version 3.02
,”
J. Nucl. Sci. Technol.
55
,
684
690
(
2018
).
19.
F. W.
Aston
, “
Isotopes and atomic weights
,”
Nature
105
,
617
619
(
1920
).
20.
E.
de Hoffmann
and
V.
Stroobant
,
Mass Spectrometry: Principles and Applications
, 3rd ed. (
John Wiley & Sons
,
Chichester, UK
,
2007
).
21.
G. L.
Morgan
,
N. S. P.
King
,
P. W.
Lisowski
,
K. G.
Boyer
,
H. A.
Enge
,
S. B.
Kowalski
,
R. F.
Holsinger
,
R. R.
Lown
,
S. G.
Iversen
,
J. R.
Tinsley
, and
R. M.
Baltrusaitis
, “
Broad range electron spectrometer using permanent magnets
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
313
(
3
),
544
556
(
1992
).
22.
K. A.
Tanaka
,
T.
Yabuuchi
,
T.
Sato
,
R.
Kodama
,
Y.
Kitagawa
,
T.
Takahashi
,
T.
Ikeda
,
Y.
Honda
, and
S.
Okuda
, “
Calibration of imaging plate for high energy electron spectrometer
,”
Rev. Sci. Instrum.
76
,
013507
(
2005
).
23.
L.
Torrisi
,
M.
Cutroneo
,
A.
Torrisi
,
L.
Silipigni
,
G.
Costa
,
M.
Rosinski
,
J.
Badziak
,
J.
Wolowski
,
A.
Zaras-Szydlowska
, and
P.
Parys
, “
Protons accelerated in the target normal sheath acceleration regime by a femtosecond laser
,”
Phys. Rev. Accel. Beams
22
,
021302
(
2019
).
24.
R.
Tibshirani
, “
Regression shrinkage and selection via the lasso
,”
J. R. Stat. Soc.: Ser. B
58
,
267
288
(
1996
).
25.
S. S.
Chen
,
D. L.
Donoho
, and
M. A.
Saunders
, “
Atomic decomposition by basis pursuit
,”
SIAM J. Sci. Comput.
20
,
33
61
(
1998
).
26.
A. E.
Hoerl
and
R. W.
Kennard
, “
Ridge regression: Biased estimation for nonorthogonal problems
,”
Technometrics
12
(
1
),
55
67
(
1970
).
27.
M.
Sugiyama
,
Introduction to Statistical Machine Learning
(
Elsevier, Inc.
,
2015
), pp.
279
293
.
28.
H.
Kiriyama
,
A. S.
Pirozhkov
,
M.
Nishiuchi
,
Y.
Fukuda
,
K.
Ogura
 et al., “
High-contrast high-intensity repetitive petawatt laser
,”
Opt. Lett.
43
,
2595
2598
(
2018
).
29.
N. P.
Dover
,
M.
Nishiuchi
,
H.
Sakaki
,
Ko.
Kondo
,
M. A.
Alkhimova
,
A. Y.
Faenov
,
M.
Hata
,
N.
Iwata
,
H.
Kiriyama
,
J. K.
Koga
,
T.
Miyahara
,
T. A.
Pikuz
,
A. S.
Pirozhkov
,
A.
Sagisaka
,
Y.
Sentoku
,
Y.
Watanabe
,
M.
Kando
, and
K.
Kondo
, “
Effect of small focus on electron heating and proton acceleration in ultrarelativistic laser-solid interactions
,”
Phys. Rev. Lett.
124
,
084802
(
2020
).
You do not currently have access to this content.