In Laser Powder Bed Fusion (LPBF), the highly localized energy input by the laser leads to high-temperature gradients. Combined with the inherent cycles of re-melting and solidification of the material, they can result in high mechanical stresses. These stresses can cause distortion and cracking within the component. In situ diffraction experiments with high-energy synchrotron radiation allow an analysis of the lattice spacing during the LPBF process and provide insight into the dynamics of stress generation and texture evolution. In this work, an LPBF system for the purpose of synchrotron x-ray diffraction experiments during the manufacturing process of multi-layer components with simple geometries is described. Moreover, results from diffraction experiments at the HEMS beamline P07 at PETRA III, DESY, Hamburg, Germany, are presented. Components with a length of ls = 20 mm and a width of ws = 2.5 mm consisting of 100 layers with a layer thickness of Δz = 50 µm were produced using the nickel-base alloy Inconel 625 as the powder material. Diffraction experiments were carried out in situ at sampling rates of f = 10 Hz with a synchrotron radiation beam size of 750 × 70 µm2. The presented experimental setup allows for the observation of arbitrary measuring positions in the sample in the transmission mode while gathering full diffraction rings. Thus, new possibilities for the observation of the dynamic evolution of strains, stresses, and textures during the LPBF process are provided.

1.
T.
Wohlers
,
Wohlers Report: 3D Printing and Additive Manufacturing State of the Industry
(
WOHLERS Associates
,
Fort Collins
,
2018
).
2.
M.
Seifi
,
A.
Salem
,
J.
Beuth
,
O.
Harrysson
, and
J. J.
Lewandowski
,
JOM
68
,
747
(
2016
).
3.
E.
Uhlmann
,
G.
Gerlitzky
, and
C.
Fleck
, in
Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium, Austin, Texas
(
University of Texas
,
2017
), p.
48
.
4.
S.
Leuders
,
M.
Thöne
,
A.
Riemer
,
T.
Niendorf
,
T.
Tröster
,
H. A.
Richard
, and
H. J.
Maier
,
Int. J. Fatigue
48
,
300
(
2013
).
5.
J. L.
Bartlett
and
X.
Li
,
Addit. Manuf.
27
,
131
(
2019
).
6.
L.
Parry
,
I. A.
Ashcroft
, and
R. D.
Wildman
,
Addit. Manuf.
12
,
1
(
2016
).
7.
A. M.
Rausch
,
V. E.
Küng
,
C.
Pobel
,
M.
Markl
, and
C.
Körner
,
Materials
10
,
1117
(
2017
).
8.
T. M.
Rodgers
,
J. D.
Madison
, and
V.
Tikare
,
Comput. Mater. Sci.
135
,
78
(
2017
).
9.
S. K.
Everton
,
M.
Hirsch
,
P.
Stravroulakis
,
R. K.
Leach
, and
A. T.
Clare
,
Mater. Des.
95
,
431
(
2016
).
10.
M.
Mani
,
B. M.
Lane
,
M. A.
Donmez
,
S. C.
Feng
, and
S. P.
Moylan
,
Int. J. Prod. Res.
55
,
1400
(
2016
).
11.
W.
Reimers
, in
Neutrons and Synchrotron Radiation in Engineering Materials Science: From Fundamentals to Material and Component Characterization
, edited by
W.
Reimers
,
A. R.
Pyzalla
,
A.
Schreyer
, and
H.
Clemens
(
Wiley-VCH
,
Weinheim, Chichester
,
2008
), p.
115
.
12.
E.
Uhlmann
,
E.
Krohmer
,
F.
Hohlstein
, and
W.
Reimers
, in
Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium, Austin, Texas
(
University of Texas
,
2017
), p.
1472
.
13.
P.
Bidare
,
I.
Bitharas
,
R. M.
Ward
,
M. M.
Attallah
, and
A. J.
Moore
,
Acta Mater.
142
,
107
(
2018
).
14.
P.
Bidare
,
R. R. J.
Maier
,
R. J.
Beck
,
J. D.
Shephard
, and
A. J.
Moore
,
Addit. Manuf.
16
,
177
(
2017
).
15.
C.
Zhao
,
K.
Fezzaa
,
R. W.
Cunningham
,
H.
Wen
,
F.
de Carlo
,
L.
Chen
,
A. D.
Rollett
, and
T.
Sun
,
Sci. Rep.
7
,
3602
(
2017
).
16.
N. D.
Parab
,
C.
Zhao
,
R.
Cunningham
,
L. I.
Escano
,
K.
Fezzaa
,
W.
Everhart
,
A. D.
Rollett
,
L.
Chen
, and
T.
Sun
,
J. Synchrotron Radiat.
25
,
1467
(
2018
).
17.
Q.
Guo
,
C.
Zhao
,
L. I.
Escano
,
Z.
Young
,
L.
Xiong
,
K.
Fezzaa
,
W.
Everhart
,
B.
Brown
,
T.
Sun
, and
L.
Chen
,
Acta Mater.
151
,
169
(
2018
).
18.
L. I.
Escano
,
N. D.
Parab
,
L.
Xiong
,
Q.
Guo
,
C.
Zhao
,
K.
Fezzaa
,
W.
Everhart
,
T.
Sun
, and
L.
Chen
,
Sci. Rep.
8
,
15079
(
2018
).
19.
L. I.
Escano
,
N. D.
Parab
,
L.
Xiong
,
Q.
Guo
,
C.
Zhao
,
T.
Sun
, and
L.
Chen
,
Synchrotron Radiat. News
32
,
9
(
2019
).
20.
C.
Kenel
,
D.
Grolimund
,
X.
Li
,
E.
Panepucci
,
V. A.
Samson
,
D. F.
Sanchez
,
F.
Marone
, and
C.
Leinenbach
,
Sci. Rep.
7
,
16358
(
2017
).
21.
C.
Kenel
,
D.
Grolimund
,
J. L.
Fife
,
V. A.
Samson
,
S.
van Petegem
,
H.
van Swygenhoven
, and
C.
Leinenbach
,
Scr. Mater.
114
,
117
(
2016
).
22.
C. L. A.
Leung
,
S.
Marussi
,
R. C.
Atwood
,
M.
Towrie
,
P. J.
Withers
, and
P. D.
Lee
,
Nat. Commun.
9
,
1355
(
2018
).
23.
C. L. A.
Leung
,
S.
Marussi
,
M.
Towrie
,
J.
del Val Garcia
,
R. C.
Atwood
,
A. J.
Bodey
,
J. R.
Jones
,
P. J.
Withers
, and
P. D.
Lee
,
Addit. Manuf.
24
,
647
(
2018
).
24.
C. L. A.
Leung
,
S.
Marussi
,
M.
Towrie
,
R. C.
Atwood
,
P. J.
Withers
, and
P. D.
Lee
,
Acta Mater.
166
,
294
(
2019
).
25.
N. P.
Calta
,
J.
Wang
,
A. M.
Kiss
,
A. A.
Martin
,
P. J.
Depond
,
G. M.
Guss
,
V.
Thampy
,
A. Y.
Fong
,
J. N.
Weker
,
K. H.
Stone
,
C. J.
Tassone
,
M. J.
Kramer
,
M. F.
Toney
,
A.
van Buuren
, and
M. J.
Matthews
,
Rev. Sci. Instrum.
89
,
055101
(
2018
).
26.
A. A.
Martin
,
N. P.
Calta
,
J. A.
Hammons
,
S. A.
Khairallah
,
M. H.
Nielsen
,
R. M.
Shuttlesworth
,
N.
Sinclair
,
M. J.
Matthews
,
J. R.
Jeffries
,
T. M.
Willey
, and
J. R. I.
Lee
,
Mater. Today Adv.
1
,
100002
(
2019
).
27.
A.
Bobel
,
L. G.
Hector
,
I.
Chelladurai
,
A. K.
Sachdev
,
T.
Brown
,
W. A.
Poling
,
R.
Kubic
,
B.
Gould
,
C.
Zhao
,
N.
Parab
,
A.
Greco
, and
T.
Sun
,
Materialia
6
,
100306
(
2019
).
28.
R.
Cunningham
,
C.
Zhao
,
N.
Parab
,
C.
Kantzos
,
J.
Pauza
,
K.
Fezzaa
,
T.
Sun
, and
A. D.
Rollett
,
Science
363
,
849
(
2019
).
29.
A. A.
Martin
,
N. P.
Calta
,
S. A.
Khairallah
,
J.
Wang
,
P. J.
Depond
,
A. Y.
Fong
,
V.
Thampy
,
G. M.
Guss
,
A. M.
Kiss
,
K. H.
Stone
,
C. J.
Tassone
,
J.
Nelson Weker
,
M. F.
Toney
,
T.
van Buuren
, and
M. J.
Matthews
,
Nat. Commun.
10
,
1987
(
2019
).
30.
C.
Zhao
,
Q.
Guo
,
X.
Li
,
N.
Parab
,
K.
Fezzaa
,
W.
Tan
,
L.
Chen
, and
T.
Sun
,
Phys. Rev. X
9
,
021052
(
2019
).
31.
A. M.
Kiss
,
A. Y.
Fong
,
N. P.
Calta
,
V.
Thampy
,
A. A.
Martin
,
P. J.
Depond
,
J.
Wang
,
M. J.
Matthews
,
R. T.
Ott
,
C. J.
Tassone
,
K. H.
Stone
,
M. J.
Kramer
,
A.
van Buuren
,
M. F.
Toney
, and
J.
Nelson Weker
,
Adv. Eng. Mater.
21
,
1900455
(
2019
).
32.
S.
Hocine
,
H.
van Swygenhoven
,
S.
van Petegem
,
C. S. T.
Chang
,
T.
Maimaitiyili
,
G.
Tinti
,
D.
Ferreira Sanchez
,
D.
Grolimund
, and
N.
Casati
,
Mater. Today
34
,
30
(
2019
).
33.
F.
Schmeiser
,
E.
Krohmer
,
N.
Schell
,
E.
Uhlmann
, and
W.
Reimers
,
Addit. Manuf.
32
,
101028
(
2020
).
34.
N.
Schell
,
A.
King
,
F.
Beckmann
,
T.
Fischer
,
M.
Müller
, and
A.
Schreyer
,
Mater. Sci. Forum
772
,
57
(
2013
).
35.
A. P.
Hammersley
,
S. O.
Svensson
,
M.
Hanfland
,
A. N.
Fitch
, and
D.
Hausermann
,
High Pressure Res.
14
,
235
(
1996
).
36.
M.
Newville
,
T.
Stensitzki
,
D. B.
Allen
, and
A.
Ingargiola
(
2014
). “
LMFIT: Non-linear least-square minimization and curve-fitting for Python
,” Zenodo.
37.
ISO 21432:2005
, Non-destructive testing—Standard test method for determining residual stresses by neutron diffraction, Geneva, Switzerland,
2005
.
38.
P.
Mercelis
and
J.-P.
Kruth
,
Rapid Prototyping J.
12
,
254
(
2006
).
You do not currently have access to this content.