This paper proposes a miniature optically pumped cesium-beam atomic frequency standard with a volume of 38.4 l and a weight of 28 kg and examines the main factors that affect its signal-to-noise ratio (SNR). Methods to improve the SNR are proposed, which improve the short-term frequency instability: installing a collimator at the exit of the cesium oven, using the beam fluorescence spectrum with the fiber-coupled output to stabilize the laser frequency, and using the 4–5 cycling transition of the cesium D2 line for the atomic detection. We also examine several frequency shifts that affect the long-term frequency instability and detail methods to reduce these shifts. At present, the frequency instability achieved by the Peking University miniature optically pumped cesium-beam frequency standard has reached 3.12×1012/τ.

1.
Y. Q.
Wang
,
Q. J.
Wang
,
J. S.
Fu
, and
T. Q.
Dong
,
The Principle of Quantum Frequency Standards
(
Science Press
,
Beijing
,
1986
).
2.
Q.
Wang
, “
Research on miniature optically pumped cesium beam frequency standard
,” Ph.D. thesis,
Peking University
,
2014
.
3.
F.
Riehle
,
Frequency Standards
(
Wiley-VCH Verlag GmbH
,
Weinheim
,
2004
).
4.
J.
Vanier
and
C.
Audoin
,
The Quantum Physics of Atomic Frequency Standards
(
A. Hilger
,
Philadelphia
,
1989
).
5.
E.
de Clercq
,
A.
Clairon
,
B.
Dahmani
,
A.
Gérard
, and
P.
Aynié
,
Frequency Standards and Metrology
(
Springer-Verlag
,
Berlin
,
1989
).
6.
W. B.
Xie
,
Q.
Wang
,
X.
He
,
X. H.
Qi
, and
X. Z.
Chen
, in
Joint Conference of the IEEE International Frequency Control Symposium and IEEE International Symposium on Applications of Ferroelectrics
,
Keystone, CO, USA
,
2020
.
7.
H.
Shi
,
J.
Ma
,
X. F.
Li
,
J.
Liu
, and
S. G.
Zhang
,
Appl. Opt.
57
,
6620
(
2018
).
8.
G. D.
Rovera
,
G.
Santarelli
, and
A.
Clairon
,
Rev. Sci. Instrum.
65
,
1502
(
1994
).
9.
C.
Affolderbach
and
G.
Mileti
,
Rev. Sci. Instrum.
76
,
073108
(
2005
).
10.
G. P.
Barwood
,
P.
Gill
, and
W. R. C.
Rowley
,
Appl. Phys. B
53
,
142
(
1991
).
11.
Q.
Wang
,
J.
Duan
,
X.-H.
Qi
,
Y.
Zhang
, and
X.-Z.
Chen
,
Chin. Phys. Lett.
32
,
054206
(
2015
).
13.
N.
Dimarcq
,
V.
Giordano
, and
P.
Cerez
,
Appl. Phys. B
59
,
135
(
1994
).
14.
C.
Audoin
,
F.
Hamouda
,
L.
Chassagne
, and
R.
Barillet
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
46
,
407
(
1999
).
15.
C.
Audoin
,
N.
Dimarcq
,
V.
Giodano
, and
J.
Viennet
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
39
,
412
(
1992
).
16.
A. D.
Marchi
,
G. D.
Rovera
, and
A.
Premoli
,
Metrologia
20
,
37
(
1984
).
17.
A. D.
Marchi
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
34
,
598
(
1987
).
19.
N. F.
Ramsey
,
Molecular Beams
(
Clarendon Press
,
Oxford
,
1956
).
20.
C.
Audoin
,
P.
Lesage
, and
A. G.
Mungall
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
23
,
501
(
1974
).
21.
H. S.
Lee
,
T. Y.
Kwon
,
H.-S.
Kang
,
Y.-H.
Park
,
C.-H.
Oh
,
S. E.
Park
,
H.
Cho
, and
V. G.
Minogin
,
Metrologia
40
,
224
(
2003
).
22.
A.
Makdissi
and
E. D.
Clercq
,
Metrologia
38
,
409
(
2001
).
23.
J. H.
Shirley
,
W. D.
Lee
, and
R. E.
Drullinger
,
Metrologia
38
,
427
(
2001
).
24.
K.
Hagimoto
,
S.
Ohshima
,
Y.
Nakadan
, and
Y.
Koga
,
IEEE Trans. Instrum. Meas.
48
,
496
(
1999
).
You do not currently have access to this content.