The potential of optical spectroscopic techniques such as diffused reflectance and fluorescence as non-invasive, in vivo diagnostic tools is being explored and validated recently. In this paper, we present the design and development of a handheld, portable, multimodal fiber optic based probe scheme to sequentially measure diffuse reflectance and fluorescence. The proposed prototype is designed to sequentially acquire diffused reflectance in the broad wavelength range of 400 nm–1600 nm and fluorescence using custom-chosen spectrophotometers, monochromatic and broadband light sources, fibers to accommodate a wide wavelength range, custom-built probe distal end, and a real-time spectral stitching and display unit. The prototype is characterized using in-house fabricated phantom tissue samples with tunable optical properties such as scattering and absorption. The depth profile study is carried out using phantom tissue layers of known optical parameters followed by the sequential measurement of diffused reflectance and fluorescence from the tissue mimicking sample.

1.
T.
Igarashi
,
K.
Nishino
,
S. K.
Nayar
 et al, “
The appearance of human skin: A survey
,”
Found. Trends Comput. Graphics Vision
3
,
1
95
(
2007
).
2.
F. B.
Myers
and
L. P.
Lee
, “
Innovations in optical microfluidic technologies for point-of-care diagnostics
,”
Lab Chip
8
,
2015
2031
(
2008
).
3.
O. R.
Šćepanović
,
Z.
Volynskaya
,
C.-R.
Kong
,
L. H.
Galindo
,
R. R.
Dasari
, and
M. S.
Feld
, “
A multimodal spectroscopy system for real-time disease diagnosis
,”
Rev. Sci. Instrum.
80
,
043103
(
2009
).
4.
V. K.
Shinoj
and
V. M.
Murukeshan
, “
Hollow-core photonic crystal fiber based multifunctional optical system for trapping, position sensing, and detection of fluorescent particles
,”
Opt. Lett.
37
,
1607
1609
(
2012
).
5.
C.
Spriet
,
D.
Trinel
,
S.
Laffray
,
M.
Landry
,
B.
Vandenbunder
,
L.
Heliot
, and
J.
Barbillat
, “
Setup of a fluorescence lifetime and spectral correlated acquisition system for two-photon microscopy
,”
Rev. Sci. Instrum.
77
,
123702
(
2006
).
6.
M.
Mirkhalaf
,
V. M.
Murukeshan
,
S.
Beng Tor
,
V. K.
Shinoj
, and
K.
Sathiyamoorthy
, “
Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications
,”
Rev. Sci. Instrum.
82
,
043110
(
2011
).
7.
V. K.
Shinoj
,
V. M.
Murukeshan
,
M.
Baskaran
, and
T.
Aung
, “
Note: A gel based imaging technique of the iridocorneal angle for evaluation of angle-closure glaucoma
,”
Rev. Sci. Instrum.
85
,
066105
(
2014
).
8.
V. K.
Shinoj
,
V. M.
Murukeshan
,
S. B.
Tor
,
N. H.
Loh
, and
S. W.
Lye
, “
Design, fabrication, and characterization of thermoplastic microlenses for fiber-optic probe imaging
,”
Appl. Opt.
53
,
1083
1088
(
2014
).
9.
X. J. J.
Hong
,
V. K.
Shinoj
,
V. M.
Murukeshan
,
M.
Baskaran
, and
T.
Aung
, “
A simple and non-contact optical imaging probe for evaluation of corneal diseases
,”
Rev. Sci. Instrum.
86
,
093702
(
2015
).
10.
R. R.
Anderson
and
J. A.
Parrish
, “
The optics of human skin
,”
J. Invest. Dermatol.
77
,
13
19
(
1981
).
11.
T.
Lister
,
P. A.
Wright
, and
P. H.
Chappell
, “
Optical properties of human skin
,”
J. Biomed. Opt.
17
,
090901
(
2012
).
12.
A. N.
Bashkatov
,
E. A.
Genina
,
V. I.
Kochubey
,
V. S.
Rubtsov
,
E. A.
Kolesnikova
, and
V. V.
Tuchin
, “
Optical properties of human colon tissues in the 350–2500 nm spectral range
,”
Quantum Electron.
44
,
779
(
2014
).
13.
M. G.
Müller
,
A.
Wax
,
I.
Georgakoudi
,
R. R.
Dasari
, and
M. S.
Feld
, “
A reflectance spectrofluorimeter for real-time spectral diagnosis of disease
,”
Rev. Sci. Instrum.
73
,
3933
3937
(
2002
).
14.
R.
Ellwood
,
E.
Zhang
,
P.
Beard
, and
B.
Cox
, “
Photoacoustic imaging using acoustic reflectors to enhance planar arrays
,”
J. Biomed. Opt.
19
,
126012
(
2014
).
15.
S.
Holler
,
B.
Haig
,
M. J.
Donovan
,
M.
Sobrero
, and
B. A.
Miles
, “
A monolithic microsphere-fiber probe for spatially resolved Raman spectroscopy: Application to head and neck squamous cell carcinomas
,”
Rev. Sci. Instrum.
89
,
034301
(
2018
).
16.
B.
LaRiviere
,
N. L.
Ferguson
,
K. S.
Garman
,
D. A.
Fisher
, and
N. M.
Jokerst
, “
Methods of extraction of optical properties from diffuse reflectance measurements of ex-vivo human colon tissue using thin film silicon photodetector arrays
,”
Biomed. Opt. Express
10
,
5703
5715
(
2019
).
17.
S.
Prince
and
S.
Malarvizhi
, “
Analysis of spectroscopic diffuse reflectance plots for different skin conditions
,”
J. Spectrosc.
24
,
467
481
(
2010
).
18.
J. S.
Soares
,
I.
Barman
,
N. C.
Dingari
,
Z.
Volynskaya
,
W.
Liu
,
N.
Klein
,
D.
Plecha
,
R. R.
Dasari
, and
M.
Fitzmaurice
, “
Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
471
476
(
2013
).
19.
P.-W.
Yang
,
I.-J.
Hsu
,
C.-W.
Chang
,
Y.-C.
Wang
,
C.-Y.
Hsieh
,
K.-H.
Shih
,
L.-F.
Wong
,
N.-Y.
Shih
,
M.-S.
Hsieh
,
M. T.-K.
Hou
 et al, “
Visible-absorption spectroscopy as a biomarker to predict treatment response and prognosis of surgically resected esophageal cancer
,”
Sci. Rep.
6
,
033414
(
2016
).
20.
R.
Meerwaldt
,
T.
Links
,
R.
Graaff
,
S. R.
Thorpe
,
J. W.
Baynes
,
J.
Hartog
,
R.
Gans
, and
A.
Smit
, “
Simple noninvasive measurement of skin autofluorescence
,”
Ann. N. Y. Acad. Sci.
1043
,
290
298
(
2005
).
21.
G. A.
Wagnières
,
A. P.
Studzinski
, and
H. E.
van den Bergh
, “
An endoscopic fluorescence imaging system for simultaneous visual examination and photodetection of cancers
,”
Rev. Sci. Instrum.
68
,
203
212
(
1997
).
22.
R.
Meerwaldt
,
H. L.
Lutgers
,
T. P.
Links
,
R.
Graaff
,
J. W.
Baynes
,
R. O. B.
Gans
, and
A. J.
Smit
, “
Skin autofluorescence is a strong predictor of cardiac mortality in diabetes
,”
Diabetes Care
30
,
107
112
(
2007
).
23.
M.
Monici
, “
Cell and tissue autofluorescence research and diagnostic applications
,”
Biotechnol. Annu. Rev.
11
,
227
256
(
2005
).
24.
T.
Dramićanin
and
M.
Dramićanin
, “
Using fluorescence spectroscopy to diagnose breast cancer
,” in
Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences
(
IntechOpen
,
London, UK
,
2016
).
25.
C. S.
Prasanth
,
J.
Betsy
,
J. L.
Jayanthi
,
U. G.
Nisha
,
J.
Prasantila
, and
N.
Subhash
, “
In vivo inflammation mapping of periodontal disease based on diffuse reflectance spectral imaging: A clinical study
,”
J. Biomed. Opt.
18
,
026019
(
2013
).
26.
H.-W.
Wang
,
J.-K.
Jiang
,
C.-H.
Lin
,
J.-K.
Lin
,
G.-J.
Huang
, and
J.-S.
Yu
, “
Diffuse reflectance spectroscopy detects increased hemoglobin concentration and decreased oxygenation during colon carcinogenesis from normal to malignant tumors
,”
Opt. Express
17
,
2805
2817
(
2009
).
27.
L. L.
De Boer
,
T. M.
Bydlon
,
F.
Van Duijnhoven
,
M.-J. T. V.
Peeters
,
C. E.
Loo
,
G. A.
Winter-Warnars
,
J.
Sanders
,
H. J.
Sterenborg
,
B. H.
Hendriks
, and
T. J.
Ruers
, “
Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery
,”
J. Transl. Med.
16
,
367
(
2018
).
28.
C.
Zhu
,
S.
Chen
,
C. H.-K.
Chui
,
B.-K.
Tan
, and
Q.
Liu
, “
Early detection and differentiation of venous and arterial occlusion in skin flaps using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy
,”
Biomed. Opt. Express
7
,
570
580
(
2016
).
29.
S.-Y.
Tzeng
,
J.-Y.
Guo
,
C.-C.
Yang
,
C.-K.
Hsu
,
H. J.
Huang
,
S.-J.
Chou
,
C.-H.
Hwang
, and
S.-H.
Tseng
, “
Portable handheld diffuse reflectance spectroscopy system for clinical evaluation of skin: A pilot study in psoriasis patients
,”
Biomed. Opt. Express
7
,
616
628
(
2016
).
30.
D.
Fajuyigbe
,
A.
Coleman
,
R. P. E.
Sarkany
,
A. R.
Young
, and
A. W.
Schmalwieser
, “
Diffuse reflectance spectroscopy as a reliable means of comparing ultraviolet radiation-induced erythema in extreme skin colors
,”
Photochem. Photobiol.
94
,
1066
1070
(
2018
).
31.
E. V.
Potapova
,
V. V.
Dremin
,
E. A.
Zherebtsov
,
I. N.
Makovik
,
A. I.
Zherebtsova
,
A. V.
Dunaev
,
K. V.
Podmasteryev
,
V. V.
Sidorov
,
A. I.
Krupatkin
,
L. S.
Khakhicheva
 et al, “
Evaluation of microcirculatory disturbances in patients with rheumatic diseases by the method of diffuse reflectance spectroscopy
,”
Human Physiol.
43
,
222
228
(
2017
).
32.
A. C.
Westerkamp
,
V. V.
Pully
,
G.
Karimian
,
F.
Bomfati
,
Z. J.
Veldhuis
,
J.
Wiersema-Buist
,
B. H.
Hendriks
,
T.
Lisman
, and
R. J.
Porte
, “
Diffuse reflectance spectroscopy accurately quantifies various degrees of liver steatosis in murine models of fatty liver disease
,”
J. Transl. Med.
13
,
309
(
2015
).
33.
A.
Keller
,
P.
Bialecki
,
T. J.
Wilhelm
, and
M. K.
Vetter
, “
Diffuse reflectance spectroscopy of human liver tumor specimens-towards a tissue differentiating optical biopsy needle using light emitting diodes
,”
Biomed. Opt. Express
9
,
1069
1081
(
2018
).
34.
K.
Vishwanath
,
K.
Chang
,
D.
Klein
,
Y. F.
Deng
,
V.
Chang
,
J. E.
Phelps
, and
N.
Ramanujam
, “
Portable, fiber-based, diffuse reflection spectroscopy (drs) systems for estimating tissue optical properties
,”
Appl. Spectrosc.
65
,
206
215
(
2011
).
35.
D.
Sorak
,
L.
Herberholz
,
S.
Iwascek
,
S.
Altinpinar
,
F.
Pfeifer
, and
H. W.
Siesler
, “
New developments and applications of handheld Raman, mid-infrared, and near-infrared spectrometers
,”
Appl. Spectrosc. Rev.
47
,
83
115
(
2012
).
36.
J.
Gonzalez
,
M.
Roman
,
M.
Hall
, and
A.
Godavarty
, “
Gen-2 hand-held optical imager towards cancer imaging: Reflectance and transillumination phantom studies
,”
Sensors
12
,
1885
1897
(
2012
).
37.
D. J.
Cappon
, “
A diffuse reflectance spectroscopy instrument for use in the optical biopsy of brain tumour margins
,” Ph.D. thesis,
McMaster University
,
Canada
,
2016
.
38.
B.
Cugmas
,
M.
Bürmen
,
M.
Bregar
,
F.
Pernuš
, and
B.
Likar
, “
Pressure-induced near infrared spectra response as a valuable source of information for soft tissue classification
,”
J. Biomed. Opt.
18
,
047002
(
2013
).
You do not currently have access to this content.