Cubic spline interpolation is able to recover temporally and spectrally resolved soft x-ray fluxes from an array of K-edge filtered x-ray diodes without the need for a priori assumptions about the spectrum or the geometry of the emitting volume. The mathematics of the cubic spline interpolation is discussed in detail. The analytic nature of the cubic spline solution allows for analytical error propagation, and the method of calculating the error for radiation temperature, spectral power, and confidence intervals of the unfolded spectrally resolved flux is explained. An unfold of a blackbody model demonstrates the accuracy of the cubic spline unfold. Tests of cubic spline performance using spectrally convolved detailed atomic model simulation results have been performed to measure the method’s ability to conserve spectral power to within a factor of 2 or better in line-dominated regimes. The unfold is also demonstrated to work when information from the x-ray diode array is limited due to high signal-to-noise ratios or the lack of signal due to over-attenuation or over-filtration of the x-ray diode signal. The robustness of the unfold with respect to background subtraction and raw signal processing, signal alignment between diode traces, limited signal information, and initial conditions is discussed. Results from an example analysis of a halfraum drive are presented to demonstrate the capabilities of the unfold in comparison with previously established methods.

1.
J. L.
Bourgade
,
B.
Villette
,
J. L.
Bocher
,
J. Y.
Boutin
,
S.
Chiche
,
N.
Dague
,
D.
Gontier
,
J. P.
Jadaud
,
B.
Savale
,
R.
Wrobel
, and
R. E.
Turner
,
Rev. Sci. Instrum.
72
,
1173
(
2001
).
2.
E. L.
Dewald
,
K. M.
Campbell
,
R. E.
Turner
,
J. P.
Holder
,
O. L.
Landen
,
S. H.
Glenzer
,
R. L.
Kauffman
,
L. J.
Suter
,
M.
Landon
,
M.
Rhodes
, and
D.
Lee
,
Rev. Sci. Instrum.
75
,
3759
(
2004
).
3.
C.
Sorce
,
J.
Schein
,
F.
Weber
,
K.
Widmann
,
K.
Campbell
,
E.
Dewald
,
R.
Turner
,
O.
Landen
,
K.
Jacoby
,
P.
Torres
, and
D.
Pellinen
,
Rev. Sci. Instrum.
77
,
10E518
(
2006
).
4.
A.
Seifter
and
G. A.
Kyrala
,
Rev. Sci. Instrum.
79
,
10F323
(
2008
).
5.
R. E.
Marrs
,
K.
Widmann
,
G. V.
Brown
,
R. F.
Heeter
,
S. A.
MacLaren
,
M. J.
May
,
A. S.
Moore
, and
M. B.
Schneider
,
Rev. Sci. Instrum.
86
,
103511
(
2015
).
6.
M. J.
May
,
J.
Weaver
,
K.
Widmann
,
G. E.
Kemp
,
D.
Thorn
,
J. D.
Colvin
,
M. B.
Schneider
,
A.
Moore
, and
B. E.
Blue
,
Rev. Sci. Instrum.
87
,
11E330
(
2016
).
7.
M. J.
May
,
J. R.
Patterson
,
C.
Sorce
,
K.
Widmann
,
K. B.
Fournier
, and
F.
Perez
,
Rev. Sci. Instrum.
83
,
10E117
(
2012
).
8.
R.
Goldman
,
Pyramid Algorithms
(
Morgan Kaufmann
,
2003
), pp.
347
443
.
9.
J.
Li
,
X.-B.
Huang
,
S.-Q.
Zhang
,
L.-B.
Yang
,
W.-P.
Xie
, and
Y.-K.
Pu
,
Rev. Sci. Instrum.
80
,
063106
(
2009
).
10.
D. L.
Fehl
,
F.
Biggs
,
G. A.
Chandler
, and
W. A.
Stygar
,
Rev. Sci. Instrum.
71
,
3072
(
2000
).
11.
S.
Tianming
,
Y.
Jiamin
, and
Y.
Rongqing
,
Rev. Sci. Instrum.
83
,
113102
(
2012
).
12.
J. P.
Knauer
and
N. C.
Gindele
,
Rev. Sci. Instrum.
75
,
3714
(
2004
).
13.
R. H.
Bartels
,
J. C.
Beatty
, and
B. A.
Barsky
,
An Introduction to Splines for Use in Computer Graphics and Geometric Modeling
(
Morgan Kaufmann
,
1998
), pp.
9
17
.
14.
R. L.
Burden
,
J. D.
Faires
, and
A. C.
Reynolds
,
Numerical Analysis
, 6th ed. (
Brooks/Cole
,
1997
), pp.
120
121
.
15.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes in FORTRAN: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
1992
), pp.
107
110
.
16.
D. L.
Fehl
and
F.
Biggs
,
Rev. Sci. Instrum.
68
,
890
(
1997
).
17.
M. J.
May
,
K.
Widmann
,
C.
Sorce
,
H.-S.
Park
, and
M.
Schneider
,
Rev. Sci. Instrum.
81
,
10E505
(
2010
).
18.
K. M.
Campbell
,
F. A.
Weber
,
E. L.
Dewald
,
S. H.
Glenzer
,
O. L.
Landen
,
R. E.
Turner
, and
P. A.
Waide
,
Rev. Sci. Instrum.
75
,
3768
(
2004
).
19.
M.
Lefebvre
,
R.
Keeler
,
R.
Sobie
, and
J.
White
,
Nucl. Instrum. Methods Phys. Res., Sect. A
451
,
520
(
2000
).
20.
J.
MacFarlane
,
I.
Golovkin
,
P.
Wang
,
P.
Woodruff
, and
N.
Pereyra
,
High Energy Density Phys.
3
,
181
(
2007
).
21.
A. S.
Moore
,
A. B. R.
Cooper
,
M. B.
Schneider
,
S.
MacLaren
,
P.
Graham
,
K.
Lu
,
R.
Seugling
,
J.
Satcher
,
J.
Klingmann
,
A. J.
Comley
,
R.
Marrs
,
M.
May
,
K.
Widmann
,
G.
Glendinning
,
J.
Castor
,
J.
Sain
,
C. A.
Back
,
J.
Hund
,
K.
Baker
,
W. W.
Hsing
,
J.
Foster
,
B.
Young
, and
P.
Young
,
Phys. Plasmas
21
,
063303
(
2014
).
You do not currently have access to this content.