Since the revolution in solid state electronics, many innovative principles were investigated for a better and simpler design. Thus, Hall effect-based sensors and instruments gained importance. To employ this principle in several operating conditions and with different setups, several researchers contributed significantly over the decades, which ultimately led to the establishment of industries producing a wide range of Hall devices. The objective of this paper is to review the available configurations and current status of the Hall effect-based technologies. A detailed discussion is carried out on the various types of existing Hall-based devices, such as linear sensors, field-programmable sensors, switches, latches, speed and directional sensors, and vane sensors. The effect of materials and the influence of several undesired effects (such as offset voltage, temperature, noise, and drift) are also investigated. The compensation/reduction techniques are mentioned therein, and interested researchers are encouraged for the development of new techniques. This paper concludes with the discussion on the market scenario (such as electronics sector and automotive industry) and progression in current research on Hall devices while projecting some new research directions in this field.

1.
E. H.
Hall
, “
On a new action of the magnet on electric currents
,”
Am. J. Math.
2
,
287
292
(
1879
).
2.
A. R.
Cooper
and
J. E.
Brignell
, “
Electronic processing of transducer signals: Hall effect as an example
,”
Sens. Actuators
7
,
189
198
(
1985
).
3.
R. S.
Popovic
,
Z.
Randjelovic
, and
D.
Manic
, “
Integrated Hall-effect magnetic sensors
,”
Sens. Actuators A: Phys.
91
,
46
50
(
2001
).
4.
J. T.
Maupin
and
M. L.
Geske
, “
The Hall effect in silicon circuits
,” in
The Hall Effect and Its Applications
(
Springer, Boston, MA
,
1980
), pp.
421
445
.
5.
N.
Jankovic
,
S.
Aleksić
, and
D.
Pantic
, “
Simulation and modeling of integrated Hall sensor devices
,” in
Proceedings of Small Systems Simulation Symposium 2012
,
12-14 February 2012
(
Niš, Serbia
), pp.
85
92
.
6.
C.
Li
,
Y.
Xu
, and
T.
Ma
, “
Modeling and simulation of Hall voltage sensor based on physical modeling environment, advances in intelligent systems research
,” in
4th International Conference on Sensors, Mechatronics and Automation (ICSMA 2016)
(
Atlantis Press
,
2016
), Vol. 136.
7.
E.
Ramsden
,
Hall-Effect Sensors: Theory and Application
(
Newnes
,
2011
).
8.
J.
Heremans
, “
Solid state magnetic field sensors and applications
,”
J. Phys. D: Appl. Phys.
26
,
1149
1168
(
1993
).
9.
W. J.
Grubbs
, “
Hall effect devices
,”
Bell Syst. Techn. J.
38
,
853
876
(
1959
).
10.
H.
Heidari
and
V.
Nabaei
, “
Magnetic sensors based on Hall effect
,” in
Magnetic Sensors for Biomedical Applications
(
John Wiley & Sons, Inc.
,
2020
), pp.
33
56
.
11.
M.
Motz
, “
Accurate and cost efficient linear Hall sensor with digital output
,” U.S. patent 8,666,701 (
17 March 2011
).
12.
C.
Schott
and
R. S.
Popovic
, “
Linearizing integrated Hall devices
,” in
Proceedings of International Solid State Sensors and Actuators Conference (Transducers’97)
(
IEEE
,
1997
), Vol. 1, pp.
393
396
.
13.
S.
Reischl
and
U.
Ausserlechner
, “
Programmable linear magnetic Hall-effect sensor with excellent accuracy
,” in
Advanced Microsystems for Automotive Applications Yearbook 2002
, edited by
S.
Krueger
and
W.
Gessner
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2002
), pp.
227
231
.
14.
U.
Ausserlechner
and
D.
Draxelmayr
, “
Programmable linear magnetic Hall sensor for automotive applications
,” in
36th International Conference on Microelectronics, Devices and Materials (MIDEM)
,
Postojna, Slovenia
,
2000
.
15.
M.
Motz
,
D.
Draxelmayr
,
T.
Werth
, and
B.
Forster
, “
A chopped Hall sensor with programmable “true power-on” function
,” in
Proceedings of the 30th European Solid-State Circuits Conference
(
IEEE
,
Leuven, Belgium
,
2004
), pp.
443
446
.
16.
L. J.
Lunzer
, “
Spraying voltage control with Hall effect switches and magnet
,” U.S. patent 5,080,289 (
14 January 1992
).
17.
M. T.
Wu
, “
Geartooth position sensor with two Hall effect elements
,” U.S. patent 5,304,926 (
19 April 1994
).
18.
J.
Chass
, “
Hall effect sensor of displacement of magnetic core
,” U.S. patent 6,356,072 B1 (
12 March 2002
).
19.
R. G.
Brig
and
E. A.
Petrocelli
, “
Hall effect proximity transducer
,” U.S. patent 315,043 A (
13 July 1965
).
20.
J.
Ricouard
and
B.
Schorter
, “
Hall effect apparatus for determining the angular position of a rotating part
,” U.S. patent 4,086,533 (
25 April 1978
).
21.
M. D.
Willett
, “
System for sensing the angular position of a rotatable member using a Hall effect transducer
,” U.S. patent 4,789,826 (
6 December 1988
).
22.
H.
Jasberg
, “
Differential Hall IC for gear-tooth sensing
,”
Sens. Actuators A: Phys.
22
,
737
742
(
1990
).
23.
E. K.
Persson
, “
Hall effect shaft angle position encoder
,” U.S. patent 4,086,519 (
25 April 1978
).
24.
K.
Bienczyk
, “
Angle measurement using a miniature Hall effect position sensor
,” in
2nd International Students Conference on Electrodynamic and Mechatronics
(
IEEE
,
2009
), pp.
21
22
.
25.
R. M.
Freeman
, “
Autopilot employing improved Hall-effect direction sensor
,” U.S. patent 3,946,691 (
30 March 1976
).
26.
R. M.
Freeman
, “
Autopilot employing improved Hall-effect direction sensor
,” U.S. patent 3,906,641 (
23 September 1975
).
27.
M.
Metz
,
A.
Hàberli
,
M.
Schneider
,
R.
Steiner
,
C. T.
Maier
, and
H.
Baltes
, “
Contactless angle measurement using four Hall devices on single chip
,” in
Proceedings of International Solid State Sensors and Actuators Conference (Transducers’97)
(
IEEE
,
1997
), Vol. 1, pp.
385
388
.
28.
A.
Haberli
,
P.
Malcovati
,
M.
Schneider
,
R.
Castagnetti
, and
H.
Baltes
, “
Contactless angle measurement by CMOS magnetic sensor with on chip read-out circuit
,” in
Proceedings of the International Solid-State Sensors and Actuators Conference (TRANSDUCERS’95)
(
IEEE
,
1995
), Vol. 1, pp.
134
137
.
29.
P.
Kejik
,
S.
Reymond
, and
R. S.
Popovic
, “
Circular Hall transducer for angular position sensing
,” in
The 14th International Conference on Solid-State Sensors, Actuators and Microsystem, TRANSDUCERS and EUROSENSORS’07, Lyon, France
(
IEEE
,
2007
), pp.
2593
2596
.
30.
D.
Stoica
and
M.
Motz
, “
A dual vertical Hall latch with direction detection
,” in
2013 Proceedings of the ESSCIRC (ESSCIRC’13)
(
IEEE
,
2013
), pp.
213
216
.
31.
P. B.
Beccue
,
S. D.
Pekarek
,
B. J.
Deken
, and
A. C.
Koenig
, “
Compensation for asymmetries and misalignment in a Hall-effect position observer used in pmsm torque-ripple control
,”
IEEE Trans. Ind. Appl.
43
,
560
570
(
2007
).
32.
N.
Samoylenko
,
Q.
Han
, and
J.
Jatskevich
, “
Dynamic performance of brushless DC motors with unbalanced Hall sensors
,”
IEEE Trans. Energy Convers.
23
,
752
763
(
2008
).
33.
P.
Alaeinovin
and
J.
Jatskevich
, “
Filtering of Hall-sensor signals for improved operation of brushless DC motors
,”
IEEE Trans. Energy Convers.
27
,
547
549
(
2012
).
34.
35.
C.
Roumenin
,
K.
Dimitrov
, and
A.
Ivanov
, “
Integrated vector sensor and magnetic compass using a novel 3D Hall structure
,”
Sens. Actuators A: Phys.
92
,
119
122
(
2001
). Part of Special Issue on Selected Papers for Eurosensors XIV.
36.
P.
Kejik
,
E.
Schurig
,
F.
Bergsma
, and
R. S.
Popovic
, “
First fully CMOS-integrated 3D Hall probe
,” in
2005 Digest of Technical Papers on the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS’05
(
IEEE
,
2005
), Vol. 1, pp.
317
320
.
37.
M.
Demierre
,
E.
Schurig
,
C.
Schott
,
P.-A.
Besse
, and
R. S.
Popović
, “
Contactless 360° absolute angular CMOS microsystem based on vertical Hall sensors
,”
Sens. Actuators A: Phys.
116
,
39
44
(
2004
).
38.
F.
Burger
,
P.-A.
Besse
, and
R. S.
Popovic
, “
New fully integrated 3-D silicon Hall sensor for precise angular-position measurements
,”
Sens. Actuators A: Phys.
67
,
72
76
(
1998
).
39.
J. L.
Michaud
and
A. J.
Harvey
, “
Hall effect seat switch
,” U.S. patent 6,457,545 B1 (
1 October 2002
).
40.
M.
Williams
, “
Contact-less ignition system using Hall effect magnetic sensor
,” U.S. patent 3,875,920 (
8 April 1975
).
41.
Z.
Wang
,
M.
Shaygan
,
M.
Otto
,
D.
Schall
, and
D.
Neumaier
, “
Flexible Hall sensors based on graphene
,”
Nanoscale
8
(
14
),
7683
7687
(
2016
).
42.
Y.
Satake
,
K.
Fujiwara
,
J.
Shiogai
,
T.
Seki
, and
A.
Tsukazaki
, “
Fe-Sn nanocrystalline films for flexible magnetic sensors with high thermal stability
,”
Sci. Rep.
9
(
1
),
3282
(
2019
).
43.
D.
Collomb
,
P.
Li
, and
S. J.
Bending
, “
Nanoscale graphene Hall sensors for high-resolution ambient magnetic imaging
,”
Sci. Rep.
9
,
14424
(
2019
).
44.
C. R.
Koppel
and
D.
Estublier
, “
The smart-1 Hall effect thruster around the moon: In flight experience
,” paper presented at
the 29th International Electric Propulsion Conference
(
Princeton University
,
2005
).
45.
L.
Mason
,
R.
Jankovsky
, and
D.
Manzella
, “
1000 hours of testing on a 10 kilowatt Hall effect thruster
,” in
37th Joint Propulsion Conference and Exhibit
(
AIAA
,
Salt Lake City
,
2001
).
46.
A.
Sandhu
,
H.
Sanbonsugi
,
I.
Shibasaki
,
M.
Abe
, and
H.
Handa
, “
High sensitivity InSb ultra-thin film micro-Hall sensors for bioscreening applications
,”
Jpn. J. Appl. Phys., Part 2
43
,
L868
(
2004
).
47.
A.
Sandhu
,
A.
Okamoto
,
I.
Shibasaki
, and
A.
Oral
, “
Nano and micro Hall-effect sensors for room-temperature scanning Hall probe microscopy
,”
Microelectron. Eng.
73-74
,
524
528
(
2004
).
48.
A.
Sandhu
,
H.
Masuda
, and
A.
Oral
, “
Room temperature scanning micro-Hall probe microscope imaging of ferromagnetic microstructures in the presence of 2.5 Tesla pulsed magnetic fields generated by an integrated mini coil
,”
Jpn. J. Appl. Phys., Part 2
41
,
L1402
(
2002
).
49.
L.
Zongsheng
,
W.
Tianping
, and
W.
Guangli
, “
A new integrated JFET 3-D magnetic-field sensor in VIP technology
,”
Sens. Actuators A: Phys.
35
,
213
216
(
1993
).
50.
S.
Kordic
, “
Integrated 3-D magnetic sensor based on an N-P-N transistor
,”
IEEE Electron Device Lett.
7
,
196
198
(
1986
).
51.
M.
Paranjape
,
I.
Filanovsky
, and
Lj
Ristic
, “
A 3-D vertical hall magnetic-field sensor in CMOS technology
,”
Sens. Actuators A: Phys.
34
(
1
),
9
14
(
1992
).
52.
D.
Misra
,
M.
Zhang
, and
Z.
Cheng
, “
A novel 3-D magnetic-field sensor in standard CMOS technology
,”
Sens. Actuators A: Phys.
34
,
67
75
(
1992
).
53.
C.
Schott
,
J.-M.
Waser
, and
R. S.
Popovic
, “
Single-chip 3-D silicon Hall sensor
,”
Sens. Actuators A: Phys.
82
,
167
173
(
2000
).
54.
C.
Roumenin
,
D.
Nikolov
, and
A.
Ivanov
, “
3-D silicon vector sensor based on a novel parallel-field Hall microdevice
,”
Sens. Actuators A: Phys.
110
,
219
227
(
2004
).
55.
H.
Pan
,
L.
Yao
,
S.
He
,
W.
Li
,
L.
Li
, and
J.
Sha
, “
Single-chip integrated 3-D Hall sensor
,” in
Third International Conference on Instrumentation, Measurement, Computer, Communication and Control
(
IEEE
,
2013
), pp.
252
255
.
56.
T.
Aytur
,
P. R.
Beatty
,
B. E.
Boser
,
M.
Anwar
, and
T.
Ishikawa
, “
An immunoassay platform based on CMOS Hall sensors
,” in
Solid-State Sensor, Actuator and Microsystems Workshop
(
Hilton Head Island
,
SC
,
2002
).
57.
A.
Kumar
and
S.
Ganguli
, “
A new Hall-effect enabled voltage amplifier device based on magnetic and thermal properties of materials
,”
J. Magn. Magn. Mater.
514
,
167054
(
2020
).
58.
C. J.
Kevane
,
S.
Legvold
, and
F. H.
Spedding
, “
The Hall effect in yttrium, lanthanum, cerium, praseodymium, neodymium, gadolinium, dysprosium, and erbium
,”
Phys. Rev.
91
,
1372
1379
(
1953
).
59.
G. S.
Anderson
,
S.
Legvold
, and
F. H.
Spedding
, “
Hall effect in Lu, Yb, Tm, and Sm
,”
Phys. Rev.
111
,
1257
(
1958
).
60.
T. G.
Berlincourt
, “
Hall effect, resistivity, and magnetoresistivity of Th, U, Zr, Ti, and Nb
,”
Phys. Rev.
114
,
969
977
(
1959
).
61.
T. R.
Lepkowski
,
G.
Shade
,
S. P.
Kwok
,
M.
Feng
,
L. E.
Dickens
,
D. L.
Laude
, and
B.
Schoendube
, “
A gas integrated Hall sensor/amplifier
,”
IEEE Electron Device Lett.
7
,
222
224
(
1986
).
62.
M.
Behet
,
J. D.
Boeck
,
G.
Borghs
, and
P.
Mijlemans
, “
High-performance InAs quantum well Hall sensors on germanium substrates
,”
Electron. Lett.
34
(
1
),
2273
2274
(
1998
).
63.
O.
Petruk
,
R.
Szewczyk
,
T.
Ciuk
,
W.
Strupiński
,
J.
Salach
,
M.
Nowicki
,
I.
Pasternak
,
W.
Winiarski
, and
K.
Trzcinka
, “
Sensitivity and offset voltage testing in the Hall-effect sensors made of graphene
,” in
Recent Advances in Automation, Robotics and Measuring Techniques
, edited by
R.
Szewczyk
,
C.
Zieliński
, and
M.
Kaliczyńska
(
Springer International Publishing
,
Cham
,
2014
), pp.
631
640
.
64.
B.
Uzlu
,
Z.
Wang
,
S.
Lukas
,
M.
Otto
,
M. C.
Lemme
, and
D.
Neumaier
, “
Gate-tunable graphene-based Hall sensors on flexible substrates with increased sensitivity
,”
Sci. Rep.
9
(
1
),
18059
(
2019
).
65.
A.
Abderrahmane
,
J.-M.
Oh
,
N.-H.
Kim
,
P. J.
Ko
, and
A.
Sandhu
, “
Micro-Hall sensors based on two-dimensional molybdenum diselenide
,”
J. Nanosci. Nanotechnol.
19
(
7
),
4330
4332
(
2019
).
66.
R.
Karplus
and
J. M.
Luttinger
, “
Hall effect in ferromagnetics
,”
Phys. Rev.
95
,
1154
1160
(
1954
).
67.
J.
Jankowski
,
S.
El-Ahmar
, and
M.
Oszwaldowski
, “
Hall sensors for extreme temperatures
,”
Sensors
11
,
876
885
(
2011
).
68.
H.
Lu
,
P.
Sandvik
,
A.
Vertiatchikh
,
J.
Tucker
, and
A.
Elasser
, “
High temperature Hall effect sensors based on AlGaN/GaN heterojunctions
,”
J. Appl. Phys.
99
,
114510
(
2006
).
69.
M.
Mahfoud
,
Q.-H.
Tran
,
S.
Wane
,
D.-T.
Ngo
,
E. H.
Belarbi
,
A.
Boukra
,
M.
Kim
,
A.
Elzwawy
,
C. G.
Kim
,
G.
Reiss
,
B.
Dieny
,
A.
Bousseksou
, and
F.
Terki
, “
Reduced thermal dependence of the sensitivity of a planar Hall sensor
,”
Appl. Phys. Lett.
115
(
7
),
072402
(
2019
).
70.
J. M.
Cesaretti
, “
Electronic circuit for compensating a sensitivity drift of a Hall effect element due to stress
,” U.S. patent 10,254,354 B2 (
9 April 2001
).
71.
C. S.
Erlangen
, “
Hall-effect amplifying device with temperature compensated characteristic
,” U.S. patent 3,613,021 (
9 April 2019
).
72.
U.
Ausserlechner
,
M.
Motz
, and
M.
Holliber
, “
Compensation of the Piezo-Hall effect in integrated Hall sensors on (100)-Si
,”
IEEE Sens. J.
7
,
1475
1482
(
2007
).
73.
R. W.
Nelson
, “
Hall effect device with epitaxal layer resistive means for providing temperature independent sensitivity
,” U.S. patent 4,760,285 (
26 July 1988
).
74.
T. Q.
Hung
,
S.
Oh
,
B.
Sinha
,
J.-R.
Jeong
,
D.-Y.
Kim
, and
C.
Kim
, “
High field-sensitivity planar Hall sensor based on NiFe/Cu/IrMn trilayer structure
,”
J. Appl. Phys.
107
,
09E715
(
2010
).
75.
A.
Chovet
,
C. S.
Roumenin
,
G.
Dimopoulos
, and
N.
Mathieu
, “
Comparison of noise properties of different magnetic-field semiconductor integrated sensors
,”
Sens. Actuators A: Phys.
22
,
790
794
(
1990
).
76.
H.
Barkhausen
, “
Zwei mit hilfe der neuen verstärker entdeckte
,”
Phys. Z
20
,
401
403
(
1919
).
77.
A.
Elzwawy
,
A.
Talantsev
, and
C.
Kim
, “
Free and forced Barkhausen noises in magnetic thin film based cross-junctions
,”
J. Magn. Magn. Mater.
458
,
292
300
(
2018
).
78.
A.
Talantsev
,
A.
Elzwawy
, and
C.
Kim
, “
Effect of NiFeCr seed and capping layers on exchange bias and planar Hall voltage response of NiFe/Au/IrMn trilayer structures
,”
J. Appl. Phys.
123
(
17
),
173902
(
2018
).
79.
D. Y.
Kim
,
B. S.
Park
, and
C. G.
Kim
, “
Optimization of planar Hall resistance using biaxial currents in a NiO/NiFe bilayer: Enhancement of magnetic field sensitivity
,”
J. Appl. Phys.
88
,
3490
3494
(
2000
).
80.
A.
Girgin
and
T. C.
Karalar
, “
Output offset in silicon Hall effect based magnetic field sensors
,”
Sens. Actuators A: Phys.
288
,
177
181
(
2019
).
81.
Y.
Kanda
and
M.
Migitaka
, “
Effect of mechanical stress on the offset voltages of Hall devices in Si IC
,”
Phys. Status Solidi A
35
,
K115
K118
(
1976
).
82.
M.
Kachniarz
,
O.
Petruk
, and
R.
Szewczyk
, “
Methodology of reduction of the offset voltage in Hall-effect sensors
,” in
Challenges in Automation, Robotics and Measurement Techniques
, edited by
R.
Szewczyk
,
C.
Zieliński
, and
M.
Kaliczyńska
(
Springer International Publishing
,
Cham
,
2016
), pp.
763
770
.
83.
H.
Blanchard
,
C.
de Raad Iseli
, and
R. S.
Popovic
, “
Compensation of the temperature-dependent offset drift of a Hall sensor
,”
Sens. Actuators A: Phys.
60
,
10
13
(
1997
). Part of Special Issue on Proceedings of Eurosensors X.
84.
C.
Liu
,
J.-G.
Liu
, and
Q.
Zhang
, “
A novel method of zero offset reduction in Hall effect sensors with applications to magnetic field measurement
,”
J. Phys.: Conf. Ser.
588
(
1
),
012022
(
2015
).
85.
F.
Montaigne
,
A.
Schuhl
,
F. N.
Van Dau
, and
A.
Encinas
, “
Development of magnetoresistive sensors based on planar Hall effect for applications to microcompass
,”
Sens. Actuators A: Phys.
81
(
1-3
),
324
327
(
2000
).
86.
R. S.
Popovic
, “
The vertical Hall-effect device
,”
IEEE Electron Device Lett.
5
,
357
358
(
1984
).
87.
S.
Taranow
, “
Method for compensation of nonequipotential voltage in the Hall voltage and means for its realization
,” German patent application 2333080 (
1973
).
88.
Y.
Sharon
,
B.
Khachatryan
, and
D.
Cheskis
, “
Towards a low current Hall effect sensor
,”
Sens. Actuators A: Phys.
279
,
278
283
(
2018
).
89.
A.
Elzwawy
,
S.
Kim
,
A.
Talantsev
, and
C.
Kim
, “
Equisensitive adjustment of planar Hall effect sensor’s operating field range by material and thickness variation of active layers
,”
J. Phys. D: Appl. Phys.
52
(
28
),
285001
(
2019
).
90.
J. R.
Lindemuth
, “
Fast Hall effect measurement system
,” U.S. patent 10,073,151 B2 (
11 September 2018
).
91.
M. A.
Paun
,
J. M.
Sallese
, and
M.
Kayal
, “
Offset and drift analysis of the Hall effect sensors. The geometrical parameters influence
,”
Dig. J. Nanomater. Biostruct.
7
,
883
891
(
2012
).
You do not currently have access to this content.