Research in new quantum materials requires multi-mode measurements spanning length scales, correlations of atomic-scale variables with a macroscopic function, and spectroscopic energy resolution obtainable only at millikelvin temperatures, typically in a dilution refrigerator. In this article, we describe a multi-mode instrument achieving a μeV tunneling resolution with in-operando measurement capabilities of scanning tunneling microscopy, atomic force microscopy, and magnetotransport inside a dilution refrigerator operating at 10 mK. We describe the system in detail including a new scanning probe microscope module design and sample and tip transport systems, along with wiring, radio-frequency filtering, and electronics. Extensive benchmarking measurements were performed using superconductor–insulator–superconductor tunnel junctions, with Josephson tunneling as a noise metering detector. After extensive testing and optimization, we have achieved less than 8 μeV instrument resolving capability for tunneling spectroscopy, which is 5–10 times better than previous instrument reports and comparable to the quantum and thermal limits set by the operating temperature at 10 mK.

1.
I. D.
Conway Lamb
,
J. I.
Colless
,
J. M.
Hornibrook
,
S. J.
Pauka
,
S. J.
Waddy
,
M. K.
Frechtling
, and
D. J.
Reilly
,
Rev. Sci. Instrum.
87
,
014701
(
2016
).
2.
B.
Patra
,
R. M.
Incandela
,
J. P. G.
van Dijk
,
H. A. R.
Homulle
,
L.
Song
,
M.
Shahmohammadi
,
R. B.
Staszewski
,
A.
Vladimirescu
,
M.
Babaie
,
F.
Sebastiano
, and
E.
Charbon
,
IEEE J. Solid-State Circuits
53
,
309
(
2018
).
3.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
,
Nature
556
,
43
(
2018
).
4.
Y. J.
Song
,
A. F.
Otte
,
Y.
Kuk
,
Y.
Hu
,
D. B.
Torrance
,
P. N.
First
,
W. A.
de Heer
,
H.
Min
,
S.
Adam
,
M. D.
Stiles
,
A. H.
MacDonald
, and
J. A.
Stroscio
,
Nature
467
,
185
(
2010
).
5.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
6.
N.
Moussy
,
H.
Courtois
, and
B.
Pannetier
,
Rev. Sci. Instrum.
72
,
128
(
2001
).
7.
H.
le Sueur
and
P.
Joyez
,
Rev. Sci. Instrum.
77
,
123701
(
2006
).
8.
H.
Kambara
,
T.
Matsui
,
Y.
Niimi
, and
H.
Fukuyama
,
Rev. Sci. Instrum.
78
,
073703
(
2007
).
9.
M.
Marz
,
G.
Goll
, and
H. V.
Löhneysen
,
Rev. Sci. Instrum.
81
,
045102
(
2010
).
10.
Y. J.
Song
,
A. F.
Otte
,
V.
Shvarts
,
Z.
Zhao
,
Y.
Kuk
,
S. R.
Blankenship
,
A.
Band
,
F. M.
Hess
, and
J. A.
Stroscio
,
Rev. Sci. Instrum.
81
,
121101
(
2010
).
11.
H.
Suderow
,
I.
Guillamon
, and
S.
Vieira
,
Rev. Sci. Instrum.
82
,
033711
(
2011
).
12.
S.
Misra
,
B. B.
Zhou
,
I. K.
Drozdov
,
J.
Seo
,
L.
Urban
,
A.
Gyenis
,
S. C. J.
Kingsley
,
H.
Jones
, and
A.
Yazdani
,
Rev. Sci. Instrum.
84
,
103903
(
2013
).
13.
M.
Assig
,
M.
Etzkorn
,
A.
Enders
,
W.
Stiepany
,
C. R.
Ast
, and
K.
Kern
,
Rev. Sci. Instrum.
84
,
033903
(
2013
).
14.
U. R.
Singh
,
M.
Enayat
,
S. C.
White
, and
P.
Wahl
,
Rev. Sci. Instrum.
84
,
013708
(
2013
).
15.
A.
Roychowdhury
,
M. A.
Gubrud
,
R.
Dana
,
J. R.
Anderson
,
C. J.
Lobb
,
F. C.
Wellstood
, and
M.
Dreyer
,
Rev. Sci. Instrum.
85
,
043706
(
2014
).
16.
M.
Liebmann
,
J. R.
Bindel
,
M.
Pezzotta
,
S.
Becker
,
F.
Muckel
,
T.
Johnsen
,
C.
Saunus
,
C. R.
Ast
, and
M.
Morgenstern
,
Rev. Sci. Instrum.
88
,
123707
(
2017
).
17.
H.
von Allwörden
,
A.
Eich
,
E. J.
Knol
,
J.
Hermenau
,
A.
Sonntag
,
J. W.
Gerritsen
,
D.
Wegner
, and
A. A.
Khajetoorians
,
Rev. Sci. Instrum.
89
,
033902
(
2018
).
18.
T.
Balashov
,
M.
Meyer
, and
W.
Wulfhekel
,
Rev. Sci. Instrum.
89
,
113707
(
2018
).
19.
T.
Machida
,
Y.
Kohsaka
, and
T.
Hanaguri
,
Rev. Sci. Instrum.
89
,
093707
(
2018
).
20.
D.
Wong
,
S.
Jeon
,
K. P.
Nuckolls
,
M.
Oh
,
S. C. J.
Kingsley
, and
A.
Yazdani
,
Rev. Sci. Instrum.
91
,
023703
(
2020
).
21.
H.
Baek
,
J.
Ha
,
D.
Zhang
,
B.
Natarajan
,
J. P.
Winterstein
,
R.
Sharma
,
R.
Hu
,
K.
Wang
,
S.
Ziemak
,
J.
Paglione
,
Y.
Kuk
,
N. B.
Zhitenev
, and
J. A.
Stroscio
,
Phys. Rev. B
92
,
094510
(
2015
).
22.
M.
Hashisaka
,
Y.
Yamauchi
,
K.
Chida
,
S.
Nakamura
,
K.
Kobayashi
, and
T.
Ono
,
Rev. Sci. Instrum.
80
,
096105
(
2009
).
23.
A.
Lukashenko
and
A. V.
Ustinov
,
Rev. Sci. Instrum.
79
,
014701
(
2008
).
24.
D. V.
Pelekhov
,
J. B.
Becker
, and
G.
Nunes
, Jr.
,
Rev. Sci. Instrum.
70
,
114
(
1999
).
25.
K. R.
Brown
,
L.
Sun
, and
B. E.
Kane
,
Rev. Sci. Instrum.
75
,
2029
(
2004
).
26.
A. E.
Gildemeister
,
T.
Ihn
,
C.
Barengo
,
P.
Studerus
, and
K.
Ensslin
,
Rev. Sci. Instrum.
78
,
013704
(
2007
).
27.
B.
Hackens
,
F.
Martins
,
S.
Faniel
,
C. A.
Dutu
,
H.
Sellier
,
S.
Huant
,
M.
Pala
,
L.
Desplanque
,
X.
Wallart
, and
V.
Bayot
,
Nat. Commun.
1
,
39
(
2010
).
28.
R. J.
Celotta
,
S. B.
Balakirsky
,
A. P.
Fein
,
F. M.
Hess
,
G. M.
Rutter
, and
J. A.
Stroscio
,
Rev. Sci. Instrum.
85
,
121301
(
2014
).
29.
C.
Wittneven
,
R.
Dombrowski
,
S. H.
Pan
, and
R.
Wiesendanger
,
Rev. Sci. Instrum.
68
,
3806
(
1997
).
30.
S. H.
Pan
, WO/1993/019494.
31.
EBL No. 4, Staveley Sensors, Inc., EBL Product Line, E. Hartford, CT.
32.
Model WMG40-340-95-EMS, Ferrovac GmbH, CH 8050 Zurich, Switzerland.
33.
Tungsten alloy HD17, Mi-Tech Metals, 4701 Massachusetts Ave., Indianapolis, Indiana 46218, USA.
34.
Model RECOM and SHOM, Ferrovac GmbH, CH 8050 Zurich, Switzerland.
35.
S. B.
Field
and
J.
Barentine
,
Rev. Sci. Instrum.
71
,
2603
(
2000
).
36.
Model JDR-500, Janis Research Company, Inc., Wilmington, MA.
37.
New England Wire, Lisbon, NH.
38.
Johnson/Cinch SMP connector 127-1711-601, Mouser part number 530-127-1711-601 1000, North Main Street, Mansfield, TX 76063, USA.
39.
J. M.
Martinis
,
M. H.
Devoret
, and
J.
Clarke
,
Phys. Rev. B
35
,
4682
(
1987
).
40.
A.
Fukushima
,
A.
Sato
,
A.
Iwasa
,
Y.
Nakamura
,
T.
Komatsuzaki
, and
Y.
Sakamoto
,
IEEE Trans. Instrum. Meas.
46
,
289
(
1997
).
41.
K.
Bladh
,
D.
Gunnarsson
,
E.
Hürfeld
,
S.
Devi
,
C.
Kristoffersson
,
B.
Smålander
,
S.
Pehrson
,
T.
Claeson
,
P.
Delsing
, and
M.
Taslakov
,
Rev. Sci. Instrum.
74
,
1323
(
2003
).
42.
F. P.
Milliken
,
J. R.
Rozen
,
G. A.
Keefe
, and
R. H.
Koch
,
Rev. Sci. Instrum.
78
,
024701
(
2007
).
43.
Discoidal Capacitors 0.150" O.D., NP0, 2000 pf, 500 V, Part number 150045EN202K6B0, API Technologies, 8061 Avonia Rd., Fairview, PA 16415, USA.
44.
Part number CU226020, Goodfellow Corporation, 125 Hookstown Grade Road, Coraopolis, PA 15108-9302, USA.
45.
J.-F.
Ge
,
M.
Ovadia
, and
J. E.
Hoffman
,
Rev. Sci. Instrum.
90
,
101401
(
2019
).
46.
F. J.
Giessibl
,
Appl. Phys. Lett.
73
,
3956
(
1998
).
47.
F.
Huber
and
F. J.
Giessibl
,
Rev. Sci. Instrum.
88
,
073702
(
2017
).
48.
Model AD 8616, Analog Devices, Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, USA.
49.
F. J.
Giessibl
,
Rev. Sci. Instrum.
90
,
011101
(
2019
).
50.
T. R.
Albrecht
,
P.
Grütter
,
D.
Horne
, and
D.
Rugar
,
J. Appl. Phys.
69
,
668
(
1991
).
51.
K.
Kobayashi
,
H.
Yamada
, and
K.
Matsushige
,
Rev. Sci. Instrum.
80
,
043708
(
2009
).
52.
F. J.
Giessibl
,
Appl. Phys. Lett.
78
,
123
(
2000
).
53.
G. H.
Simon
,
M.
Heyde
, and
H.-P.
Rust
,
Nanotechnology
18
,
255503
(
2007
).
54.
F. J.
Giessibl
,
Rev. Mod. Phys.
75
,
949
(
2003
).
55.
M.
Človečko
and
P.
Skyba
,
Appl. Phys. Lett.
115
,
193507
(
2019
).
56.
S.
Jung
,
G. M.
Rutter
,
N. N.
Klimov
,
D. B.
Newell
,
I.
Calizo
,
A. R.
Hight-Walker
,
N. B.
Zhitenev
, and
J. A.
Stroscio
,
Nat. Phys.
7
,
245
(
2011
).
57.
D.
Walkup
,
F.
Ghahari
,
C.
Gutiérrez
,
K.
Watanabe
,
T.
Taniguchi
,
N. B.
Zhitenev
, and
J. A.
Stroscio
,
Phys. Rev. B
101
,
035428
(
2020
).
58.
S.
Kim
,
J.
Schwenk
,
D.
Walkup
,
Y.
Zeng
,
F.
Ghahari
,
S. T.
Le
,
M. R.
Slot
,
J.
Berwanger
,
S. R.
Blankenship
,
K.
Watanabe
,
T.
Taniguchi
,
F. J.
Giessibl
,
N. B.
Zhitenev
,
C. R.
Dean
, and
J. A.
Stroscio
, arXiv:2006.10730 [cond-mat.mes-hall] (
2020
).
59.
C. R.
Ast
,
B.
Jäck
,
J.
Senkpiel
,
M.
Eltschka
,
M.
Etzkorn
,
J.
Ankerhold
, and
K.
Kern
,
Nat. Commun.
7
,
13009
(
2016
).
60.
K.
Maki
and
T.
Tsuneto
,
Prog. Theor. Phys.
31
,
945
(
1964
).
61.
D. C.
Worledge
and
T. H.
Geballe
,
Phys. Rev. B
62
,
447
(
2000
).
62.
H.
Huang
,
C.
Padurariu
,
J.
Senkpiel
,
R.
Drost
,
A. L.
Yeyati
,
J. C.
Cuevas
,
B.
Kubala
,
J.
Ankerhold
,
K.
Kern
, and
C. R.
Ast
, arXiv:1912.08901 [Cond-Mat] (
2019
).
63.
Model SA-606F2, NF Corporation, 6-3-20 Tsunashima Higashi, Kohoku-ku, Yokohama 223-8508, Japan.
64.
Model DLPCS-100, Femto Messtechnik GmbH, Klosterstraße 64, 10179 Berlin, Germany.
65.
Model 1211, DL Instruments, Ithaca, NY, USA.
66.
Nanonis SPM control system, SPECS Zurich GmbH, Technoparkstrasse 1, 8005 Zurich, Switzerland.
67.
Model AD 524, Analog Devices, Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, USA.
68.
Model AD OP77E, Analog Devices, Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, USA.
69.
Model SLP-1.9+, Mini-Circuits, P.O. Box 350166, Brooklyn, NY 11235-0003, USA.
70.
Model 3076, KR Electronics, 91 Avenel Street, Avenel, NJ 07001, USA.
71.
Model CN060412, Toroid Corporation, 2020 Northwood Drive, Salisbury, MD 21801, USA.
72.
Model 56-705-002, API Technologies, 8061 Avonia Rd., Fairview, PA 16415, USA.
73.
Model 370, Lake Shore Cryotronics, 575 McCorkle Blvd., Westerville, OH 43082-8699, USA.
74.
D. V.
Averin
,
Y. V.
Nazarov
, and
A. A.
Odintsov
,
Physica B
165–166
,
945
(
1990
).
75.
S.
Kurokawa
and
A.
Sakai
,
J. Appl. Phys.
83
,
7416
(
1998
).
76.
J. M.
de Voogd
,
M. A.
van Spronsen
,
F. E.
Kalff
,
B.
Bryant
,
O.
Ostojić
,
A. M. J.
den Haan
,
I. M. N.
Groot
,
T. H.
Oosterkamp
,
A. F.
Otte
, and
M. J.
Rost
,
Ultramicroscopy
181
,
61
(
2017
).
77.
W.
Paul
,
S.
Baumann
,
C. P.
Lutz
, and
A. J.
Heinrich
,
Rev. Sci. Instrum.
87
,
074703
(
2016
).
78.

The error represents one standard deviation in the measured quantity.

You do not currently have access to this content.