In order to extend the pressure and compositional range where silicate melts can be quenched to form glass in a multi-anvil high-pressure and high-temperature apparatus, a rapid-quench technique, which includes an external cooling system and a low thermal-inertia assembly, was developed. This technique allows much higher cooling rates (6000–7000 °C/s) than regular piston-cylinder (130 °C/s) apparatus and multi-anvil (650 °C/s) apparatus, which are widely used in solid Earth science. Such high cooling rates are critical to avoid unwanted changes in a sample, such as melt crystallization and volatile loss, during quenching.

1.
H. T.
Hall
, “
Some high-pressure, high-temperature apparatus design considerations: Equipment for use at 100 000 atmospheres and 3000 °C
,”
Rev. Sci. Instrum.
29
,
267
275
(
1958
).
2.
D.
Yamazaki
,
E.
Ito
,
T.
Yoshino
,
N.
Tsujino
,
A.
Yoneda
,
H.
Gomi
,
J.
Vazhakuttiyakam
,
M.
Sakurai
,
Y.
Zhang
,
Y.
Higo
, and
Y.
Tange
, “
High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg, Fe)SiO3
,”
C. R. Geosci.
351
,
253
259
(
2019
).
3.
L.
Xie
,
A.
Yoneda
,
T.
Yoshino
,
D.
Yamazaki
,
N.
Tsujino
,
Y.
Higo
,
Y.
Tange
,
T.
Irifune
,
T.
Shimei
, and
E.
Ito
, “
Synthesis of boron-doped diamond and its application as a heating material in a multi-anvil high-pressure apparatus
,”
Rev. Sci. Instrum.
88
,
093904
(
2017
).
4.
T.
Katsura
,
K.-i.
Funakoshi
,
A.
Kubo
,
N.
Nishiyama
,
Y.
Tange
,
Y.-i.
Sueda
,
T.
Kubo
, and
W.
Utsumi
, “
A large-volume high-pressure and high-temperature apparatus for in situ X-ray observation, ‘SPEED-Mk. II’
,”
Phys. Earth Planet. Inter.
143-144
,
497
506
(
2004
).
5.
A.
Sano-Furukawa
,
T.
Hattori
,
H.
Arima
,
A.
Yamada
,
S.
Tabata
,
M.
Kondo
,
A.
Nakamura
,
H.
Kagi
, and
T.
Yagi
, “
Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments
,”
Rev. Sci. Instrum.
85
,
113905
(
2014
).
6.
E.
Ito
,
G.
Schubert
,
B.
Romanowicz
, and
A.
Dziewonski
, “
Theory and practice–multianvil cells and high-pressure experimental methods
,”
Treatise Geophys.
2
,
197
230
(
2007
).
7.
R. C.
Liebermann
, “
Multi-anvil, high pressure apparatus: A half-century of development and progress
,”
High Press. Res.
31
,
493
532
(
2011
).
8.
R. J.
Angel
,
A.
Chopelas
, and
N. L.
Ross
, “
Stability of high-density clinoenstatite at upper-mantle pressures
,”
Nature
358
,
322
324
(
1992
).
9.
S.
Brawer
,
Relaxation in Viscous Liquids and Glasses: Review of Phenomenology, Molecular Dynamics Simulations, and Theoretical Treatment
(
American Ceramic Society
,
1985
).
10.
J. R.
Allwardt
,
J. F.
Stebbins
,
B. C.
Schmidt
,
D. J.
Frost
,
A. C.
Withers
, and
M. M.
Hirschmann
, “
Aluminum coordination and the densification of high-pressure aluminosilicate glasses
,”
Am. Miner.
90
,
1218
1222
(
2005
).
11.
J. R.
Allwardt
,
J. F.
Stebbins
,
H.
Terasaki
,
L.-S.
Du
,
D. J.
Frost
,
A. C.
Withers
,
M. M.
Hirschmann
,
A.
Suzuki
, and
E.
Ohtani
, “
Effect of structural transitions on properties of high-pressure silicate melts: 27Al NMR, glass densities, and melt viscosities
,”
Am. Miner.
92
,
1093
1104
(
2007
).
12.
C.
Aubaud
,
E. H.
Hauri
, and
M. M.
Hirschmann
, “
Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts
,”
Geophys. Res. Lett.
31
,
L20611
(
2004
).
13.
K. J.
Grant
,
S. C.
Kohn
, and
R. A.
Brooker
, “
The partitioning of water between olivine, orthopyroxene and melt synthesised in the system albite–forsterite–H2O
,”
Earth Planet. Sci. Lett.
260
,
227
241
(
2007
).
14.
T. J.
Tenner
,
M. M.
Hirschmann
,
A. C.
Withers
, and
R. L.
Hervig
, “
Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting
,”
Chem. Geol.
262
,
42
56
(
2009
).
15.
E.
Hauri
,
G.
Gaetani
, and
T.
Green
, “
Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions
,”
Earth Planet. Sci. Lett.
248
,
715
734
(
2006
).
16.
A.
Rosenthal
,
E. H.
Hauri
, and
M. M.
Hirschmann
, “
Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions
,”
Earth Planet. Sci. Lett.
412
,
77
87
(
2015
).
17.
M.
Gavrilenko
,
M.
Krawczynski
,
P.
Ruprecht
,
W.
Li
, and
J. G.
Catalano
, “
The quench control of water estimates in convergent margin magmas
,”
Am. Miner.
104
,
936
948
(
2019
).
18.
D.
Walker
,
M. A.
Carpenter
, and
C. M.
Hitch
, “
Some simplifications to multianvil devices for high pressure experiments
,”
Am. Miner.
75
,
1020
1028
(
1990
).
19.
R. A.
Secco
and
W.
Yong
, “
Low temperature system for a large volume multi-anvil press
,”
Rev. Sci. Instrum.
87
,
123901
(
2016
).
20.
W.
Yong
and
R. A.
Secco
, “
A simple system for low-temperature experiments in a large-volume multi-anvil press
,”
Rev. Sci. Instrum.
88
,
106106
(
2017
).
21.
T.
Ishii
,
L.
Shi
,
R.
Huang
,
N.
Tsujino
,
D.
Druzhbin
,
R.
Myhill
,
Y.
Li
,
L.
Wang
,
T.
Yamamoto
,
N.
Miyajima
,
T.
Kawazoe
,
N.
Nishiyama
,
Y.
Higo
,
Y.
Tange
, and
T.
Katsura
, “
Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils
,”
Rev. Sci. Instrum.
87
,
024501
(
2016
).
22.
T.
Ishii
,
Z.
Liu
, and
T.
Katsura
, “
A breakthrough in pressure generation by a kawai-type multi-anvil apparatus with tungsten carbide anvils
,”
Engineering
5
,
434
440
(
2019
).
23.
D. J.
Frost
,
B. T.
Poe
,
R. G.
Trønnes
,
C.
Liebske
,
A.
Duba
, and
D. C.
Rubie
, “
A new large-volume multianvil system
,”
Phys. Earth Planet. Inter.
143
,
507
514
(
2004
).
24.
M. J.
Walter
,
Y.
Thibault
,
K.
Wei
, and
R. W.
Luth
, “
Characterizing experimental pressure and temperature conditions in multi-anvil apparatus
,”
Can. J. Phys.
73
,
273
286
(
1995
).
25.
J. C.
Jaeger
and
H. S.
Carslaw
,
Conduction of Heat in Solids
(
Clarendon Press
,
1959
).
26.
P. W.
Bridgman
, “
The effect of pressure on the thermal conductivity of metals
,”
Proc. Am. Acad. Arts Sci.
57
,
77
127
(
1922
).
27.
S.
Ohlhorst
,
H.
Behrens
, and
F.
Holtz
, “
Compositional dependence of molar absorptivities of near-infrared OH-and H2O bands in rhyolitic to basaltic glasses
,”
Chem. Geol.
174
,
5
20
(
2001
).
28.
P. W.
Mirwald
and
H. J.
Massonne
, “
The low-high quartz and quartz-coesite transition to 40 kbar between 600 °C and 1600 °C and some reconnaissance data on the effect of NaAlO2 component on the low quartz-coesite transition
,”
J. Geophys. Res.
85
,
6983
6990
, (
1980
).
29.
J.
Zhang
,
B.
Li
,
W.
Utsumi
, and
R. C.
Liebermann
, “
In situ X-ray observations of the coesite-stishovite transition: Reversed phase boundary and kinetics
,”
Phys. Chem. Miner.
23
,
1
10
(
1996
).
You do not currently have access to this content.