In order to extend the pressure and compositional range where silicate melts can be quenched to form glass in a multi-anvil high-pressure and high-temperature apparatus, a rapid-quench technique, which includes an external cooling system and a low thermal-inertia assembly, was developed. This technique allows much higher cooling rates (6000–7000 °C/s) than regular piston-cylinder (130 °C/s) apparatus and multi-anvil (650 °C/s) apparatus, which are widely used in solid Earth science. Such high cooling rates are critical to avoid unwanted changes in a sample, such as melt crystallization and volatile loss, during quenching.
REFERENCES
1.
H. T.
Hall
, “Some high-pressure, high-temperature apparatus design considerations: Equipment for use at 100 000 atmospheres and 3000 °C
,” Rev. Sci. Instrum.
29
, 267
–275
(1958
).2.
D.
Yamazaki
, E.
Ito
, T.
Yoshino
, N.
Tsujino
, A.
Yoneda
, H.
Gomi
, J.
Vazhakuttiyakam
, M.
Sakurai
, Y.
Zhang
, Y.
Higo
, and Y.
Tange
, “High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg, Fe)SiO3
,” C. R. Geosci.
351
, 253
–259
(2019
).3.
L.
Xie
, A.
Yoneda
, T.
Yoshino
, D.
Yamazaki
, N.
Tsujino
, Y.
Higo
, Y.
Tange
, T.
Irifune
, T.
Shimei
, and E.
Ito
, “Synthesis of boron-doped diamond and its application as a heating material in a multi-anvil high-pressure apparatus
,” Rev. Sci. Instrum.
88
, 093904
(2017
).4.
T.
Katsura
, K.-i.
Funakoshi
, A.
Kubo
, N.
Nishiyama
, Y.
Tange
, Y.-i.
Sueda
, T.
Kubo
, and W.
Utsumi
, “A large-volume high-pressure and high-temperature apparatus for in situ X-ray observation, ‘SPEED-Mk. II’
,” Phys. Earth Planet. Inter.
143-144
, 497
–506
(2004
).5.
A.
Sano-Furukawa
, T.
Hattori
, H.
Arima
, A.
Yamada
, S.
Tabata
, M.
Kondo
, A.
Nakamura
, H.
Kagi
, and T.
Yagi
, “Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments
,” Rev. Sci. Instrum.
85
, 113905
(2014
).6.
E.
Ito
, G.
Schubert
, B.
Romanowicz
, and A.
Dziewonski
, “Theory and practice–multianvil cells and high-pressure experimental methods
,” Treatise Geophys.
2
, 197
–230
(2007
).7.
R. C.
Liebermann
, “Multi-anvil, high pressure apparatus: A half-century of development and progress
,” High Press. Res.
31
, 493
–532
(2011
).8.
R. J.
Angel
, A.
Chopelas
, and N. L.
Ross
, “Stability of high-density clinoenstatite at upper-mantle pressures
,” Nature
358
, 322
–324
(1992
).9.
S.
Brawer
, Relaxation in Viscous Liquids and Glasses: Review of Phenomenology, Molecular Dynamics Simulations, and Theoretical Treatment
(American Ceramic Society
, 1985
).10.
J. R.
Allwardt
, J. F.
Stebbins
, B. C.
Schmidt
, D. J.
Frost
, A. C.
Withers
, and M. M.
Hirschmann
, “Aluminum coordination and the densification of high-pressure aluminosilicate glasses
,” Am. Miner.
90
, 1218
–1222
(2005
).11.
J. R.
Allwardt
, J. F.
Stebbins
, H.
Terasaki
, L.-S.
Du
, D. J.
Frost
, A. C.
Withers
, M. M.
Hirschmann
, A.
Suzuki
, and E.
Ohtani
, “Effect of structural transitions on properties of high-pressure silicate melts: 27Al NMR, glass densities, and melt viscosities
,” Am. Miner.
92
, 1093
–1104
(2007
).12.
C.
Aubaud
, E. H.
Hauri
, and M. M.
Hirschmann
, “Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts
,” Geophys. Res. Lett.
31
, L20611
(2004
).13.
K. J.
Grant
, S. C.
Kohn
, and R. A.
Brooker
, “The partitioning of water between olivine, orthopyroxene and melt synthesised in the system albite–forsterite–H2O
,” Earth Planet. Sci. Lett.
260
, 227
–241
(2007
).14.
T. J.
Tenner
, M. M.
Hirschmann
, A. C.
Withers
, and R. L.
Hervig
, “Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting
,” Chem. Geol.
262
, 42
–56
(2009
).15.
E.
Hauri
, G.
Gaetani
, and T.
Green
, “Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions
,” Earth Planet. Sci. Lett.
248
, 715
–734
(2006
).16.
A.
Rosenthal
, E. H.
Hauri
, and M. M.
Hirschmann
, “Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions
,” Earth Planet. Sci. Lett.
412
, 77
–87
(2015
).17.
M.
Gavrilenko
, M.
Krawczynski
, P.
Ruprecht
, W.
Li
, and J. G.
Catalano
, “The quench control of water estimates in convergent margin magmas
,” Am. Miner.
104
, 936
–948
(2019
).18.
D.
Walker
, M. A.
Carpenter
, and C. M.
Hitch
, “Some simplifications to multianvil devices for high pressure experiments
,” Am. Miner.
75
, 1020
–1028
(1990
).19.
R. A.
Secco
and W.
Yong
, “Low temperature system for a large volume multi-anvil press
,” Rev. Sci. Instrum.
87
, 123901
(2016
).20.
W.
Yong
and R. A.
Secco
, “A simple system for low-temperature experiments in a large-volume multi-anvil press
,” Rev. Sci. Instrum.
88
, 106106
(2017
).21.
T.
Ishii
, L.
Shi
, R.
Huang
, N.
Tsujino
, D.
Druzhbin
, R.
Myhill
, Y.
Li
, L.
Wang
, T.
Yamamoto
, N.
Miyajima
, T.
Kawazoe
, N.
Nishiyama
, Y.
Higo
, Y.
Tange
, and T.
Katsura
, “Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils
,” Rev. Sci. Instrum.
87
, 024501
(2016
).22.
T.
Ishii
, Z.
Liu
, and T.
Katsura
, “A breakthrough in pressure generation by a kawai-type multi-anvil apparatus with tungsten carbide anvils
,” Engineering
5
, 434
–440
(2019
).23.
D. J.
Frost
, B. T.
Poe
, R. G.
Trønnes
, C.
Liebske
, A.
Duba
, and D. C.
Rubie
, “A new large-volume multianvil system
,” Phys. Earth Planet. Inter.
143
, 507
–514
(2004
).24.
M. J.
Walter
, Y.
Thibault
, K.
Wei
, and R. W.
Luth
, “Characterizing experimental pressure and temperature conditions in multi-anvil apparatus
,” Can. J. Phys.
73
, 273
–286
(1995
).25.
26.
P. W.
Bridgman
, “The effect of pressure on the thermal conductivity of metals
,” Proc. Am. Acad. Arts Sci.
57
, 77
–127
(1922
).27.
S.
Ohlhorst
, H.
Behrens
, and F.
Holtz
, “Compositional dependence of molar absorptivities of near-infrared OH-and H2O bands in rhyolitic to basaltic glasses
,” Chem. Geol.
174
, 5
–20
(2001
).28.
P. W.
Mirwald
and H. J.
Massonne
, “The low-high quartz and quartz-coesite transition to 40 kbar between 600 °C and 1600 °C and some reconnaissance data on the effect of NaAlO2 component on the low quartz-coesite transition
,” J. Geophys. Res.
85
, 6983
–6990
, (1980
).29.
J.
Zhang
, B.
Li
, W.
Utsumi
, and R. C.
Liebermann
, “In situ X-ray observations of the coesite-stishovite transition: Reversed phase boundary and kinetics
,” Phys. Chem. Miner.
23
, 1
–10
(1996
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.