Multi-degree-of-freedom (multi-DOF) nanopositioning stages (NPSs) have rapidly growing applications in the spatial micro-/nano-machining and manipulation. Compliant parallel mechanisms (CPMs) demonstrate advantages to achieve a large output stiffness and high payload. A four-DOF NPS based on six-branched-chain CPMs is proposed in this paper. First, a mechanism design approach is introduced. One primary vertical DOF is generated using three parallel-kinematic lever amplifiers. A three-revolute-revolute-revolute mechanism acts as the kinematic configuration to produce three secondary planar DOFs. Three types of single-axis and one type of double-axis notch flexure hinges (NFHs) are employed to realize the nanoscale displacement/movement guiding, transferring, and decoupling. Second, a stiffness modeling approach is derived. Combined with exact compliance matrices of 54 NFHs and 95 flexible beams, a four-DOF high-efficiency stiffness model of the six-branched-chain CPM is built. The calculation procedure of the whole input/output stiffnesses and coupling ratios takes 12.06 ms. Simulation and prototype test results validate the calculation accuracy. For example, the maximum calculation deviation of input stiffnesses is verified to be 4.52% and 8.18%, respectively. The two proposed approaches contribute to the statics parameter optimization of spatial multi-DOF NPSs.

1.
J. F.
Cuttino
,
A. C.
Miller
, Jr.
, and
D. E.
Schinstock
, “
Performance optimization of a fast tool servo for single-point diamond turning machines
,”
IEEE/ASME Trans. Mechatronics
4
,
169
179
(
1999
).
2.
A.
Elmustafa
and
M. G.
Lagally
, “
Flexural-hinge guided motion nanopositioner stage for precision machining: Finite element simulations
,”
Precis. Eng.
25
,
77
81
(
2001
).
3.
M.
Jouaneh
and
R.
Yang
, “
Modeling of flexure-hinge type lever mechanisms
,”
Precis. Eng.
27
,
407
418
(
2003
).
4.
T.
Wada
,
M.
Takahashi
,
T.
Moriwaki
, and
K.
Nakamoto
, “
Development of a three axis controlled fast tool servo for ultra precision machining (1st report) - development of 3-axis FTS unit and evaluation of its characteristics
,”
Jpn. Soc. Precis. Eng.
73
,
1345
1349
(
2007
).
5.
Z.
Zhu
,
X.
Zhou
,
Z.
Liu
,
R.
Wang
, and
L.
Zhu
, “
Development of a piezoelectrically actuated two-degree-of-freedom fast tool servo with decoupled motions for micro-/nanomachining
,”
Precis. Eng.
38
,
809
820
(
2014
).
6.
L.
Wu
,
A.
Xu
, and
S.
Liao
, “
Study on three degrees of freedom tandem fast tool servo device
,”
Mach. Tool Hydraul.
45
,
57
61
(
2017
).
7.
Y.-L.
Chen
,
Y.
Cai
,
K.
Tohyama
,
Y.
Shimizu
,
S.
Ito
, and
W.
Gao
, “
Auto-tracking single point diamond cutting on non-planar brittle material substrates by a high-rigidity force controlled fast tool servo
,”
Precis. Eng.
49
,
253
261
(
2017
).
8.
W.-L.
Zhu
,
F.
Duan
,
X.
Zhang
,
Z.
Zhu
, and
B.-F.
Ju
, “
A new diamond machining approach for extendable fabrication of micro-freeform lens array
,”
Int. J. Mach. Tools Manufact.
124
,
134
148
(
2018
).
9.
S.
Fatikow
,
T.
Wich
,
H.
Hülsen
,
T.
Sievers
, and
M.
Jähnisch
, “
Microrobot system for automatic nanohandling inside a scanning electron microscope
,”
IEEE/ASME Trans. Mechatron.
12
,
244
252
(
2007
).
10.
Y.
Tian
,
B.
Shirinzadeh
, and
D.
Zhang
, “
Design and dynamics of a 3-DOF flexure-based parallel mechanism for micro/nano manipulation
,”
Microelectron. Eng.
87
,
230
241
(
2010
).
11.
U.
Bhagat
,
B.
Shirinzadeh
,
L.
Clark
,
P.
Chea
,
Y.
Qin
,
Y.
Tian
, and
D.
Zhang
, “
Design and analysis of a novel flexure-based 3-DOF mechanism
,”
Mech. Mach. Theory
74
,
173
187
(
2014
).
12.
Z.
Zhu
,
S.
To
,
W.-L.
Zhu
,
Y.
Li
, and
P.
Huang
, “
Optimum design of a piezo-actuated triaxial compliant mechanism for nanocutting
,”
IEEE Trans. Indust. Electron.
65
,
6362
6371
(
2018
).
13.
R.
Wang
,
X.
Zhang
, and
Z.
Yin
, “
Design and stiffness modeling of a compact 3-DOF compliant parallel nanopositioner for the tool servo of the ultra precision machining
,” in
2018 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(
IEEE
,
Kuala Lumpur, Malaysia
,
2018
), pp.
964
971
.
14.
Y. L.
Zhang
,
Y.
Zhang
,
C.
Ru
,
B. K.
Chen
, and
Y.
Sun
, “
A load-lock-compatible nanomanipulation system for scanning electron microscope
,”
IEEE/ASME Trans. Mechatron.
18
,
230
237
(
2013
).
15.
C.
Shi
,
D. K.
Luu
,
Q.
Yang
,
J.
Liu
,
J.
Chen
,
C.
Ru
,
S.
Xie
,
J.
Luo
,
J.
Ge
, and
Y.
Sun
, “
Recent advances in nanorobotic manipulation inside scanning electron microscopes
,”
Microsyst. Nanoeng.
2
,
1
16
(
2016
).
16.
S.
Watanabe
and
T.
Ando
, “
High-speed xyz-nanopositioner for scanning ion conductance microscopy
,”
Appl. Phys. Lett.
111
,
113106
(
2017
).
17.
Z.
Shao
,
S.
Wu
,
J.
Wu
, and
H.
Fu
, “
A novel 5-DOF high-precision compliant parallel mechanism for large-aperture grating tiling
,”
Mech. Sci.
8
,
349
358
(
2017
).
18.
X.
Zhang
and
Q.
Xu
, “
Design and testing of a new 3-DOF spatial flexure parallel micropositioning stage
,”
Int. J. Precis. Eng. Manufact.
19
,
109
118
(
2018
).
19.
J.
Pinskier
,
B.
Shirinzadeh
,
L.
Clark
, and
Y.
Qin
, “
Development of a 4-DOF haptic micromanipulator utilizing a hybrid parallel-serial flexure mechanism
,”
Mechatronics
50
,
55
68
(
2018
).
20.
R.
Wang
and
X.
Zhang
, “
A planar 3-DOF nanopositioning platform with large magnification
,”
Precis. Eng.
46
,
221
231
(
2016
).
21.
R.
Wang
and
X.
Zhang
, “
Optimal design of a planar parallel 3-DOF nanopositioner with multi-objective
,”
Mech. Mach. Theory
112
,
61
83
(
2017
).
22.
Y.
Qin
,
B.
Shirinzadeh
,
Y.
Tian
,
D.
Zhang
, and
U.
Bhagat
, “
Design and computational optimization of a decoupled 2-DOF monolithic mechanism
,”
IEEE/ASME Trans. Mechatronics
19
,
872
881
(
2014
).
23.
R.
Wang
and
X.
Zhang
, “
Parameters optimization and experiment of a planar parallel 3-DOF nanopositioning system
,”
IEEE Trans. Indust. Electron.
65
,
2388
2397
(
2018
).
24.
L.
Clark
,
B.
Shirinzadeh
,
J.
Pinskier
,
Y.
Tian
, and
D.
Zhang
, “
Topology optimisation of bridge input structures with maximal amplification for design of flexure mechanisms
,”
Mech. Mach. Theory
122
,
113
131
(
2018
).
25.
Y.
Qin
,
B.
Shirinzadeh
,
D.
Zhang
, and
Y.
Tian
, “
Design and kinematics modeling of a novel 3-DOF monolithic manipulator featuring improved Scott-Russell mechanisms
,”
J. Mech. Des.
135
,
1004
1009
(
2013
).
26.
Y. K.
Yong
and
T.-F.
Lu
, “
Kinetostatic modeling of 3-RRR compliant micro-motion stages with flexure hinges
,”
Mech. Mach. Theory
44
,
1156
1175
(
2009
).
27.
S.
Šalinić
and
A.
Nikolić
, “
A new pseudo-rigid-body model approach for modeling the quasi-static response of planar flexure-hinge mechanisms
,”
Mech. Mach. Theory
124
,
150
161
(
2018
).
28.
Y. K.
Yong
,
T.-F.
Lu
, and
D. C.
Handley
, “
Review of circular flexure hinge design equations and derivation of empirical formulations
,”
Precis. Eng.
32
,
63
70
(
2008
).
29.
N.
Lobontiu
,
Compliant Mechanisms: Design of Flexure Hinges
(
CRC Press
,
Boca Raton, FL, USA
,
2003
).
30.
J.
Wu
,
Y.
Zhang
,
Y.
Lu
,
Z.
Wen
,
D.
Bin
, and
J.
Tan
, “
Modeling and design of a two-axis elliptical notch flexure hinge
,”
Rev. Sci. Instrum.
89
,
045010
(
2018
).
You do not currently have access to this content.