The laser flash method is highly regarded due to its applicability to a wide temperature range, from cryogenic temperatures to the melting point of refractory metals, and to extreme environments involving radioactive or hazardous materials. Although instruments implementing this method are mostly produced on a commercial basis by major manufacturers, there is always room for improvement both in terms of experimental methods and data treatment procedures. The measurement noise, either due to the detector performance or electromagnetic interferences, presents a significant problem when accurate determination of thermal properties is desired. Noise resilience of the laser flash method is rarely mentioned in the published literature; there are currently no data treatment procedures that could guarantee adequate performance under any operating conditions. In this paper, a computational framework combining finite-difference solutions of the heat conduction problem with nonlinear optimization techniques based on the use of quasi-Newton direction search and stochastic linear search with the Wolfe conditions is presented. The application of this framework to data with varying level of noise is considered. Finally, cross-verification and validation using an external standard, a commercial, and an in-house built laser flash instrument are presented. The open-source software implementing the described computational method is benchmarked against its industrial counterpart.

1.
W. J.
Parker
,
R. J.
Jenkins
,
C. P.
Butler
, and
G. L.
Abbott
, “
Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity
,”
J. Appl. Phys.
32
,
1679
1684
(
1961
).
2.
S. E.
Gustafsson
,
E.
Karawacki
, and
M. N.
Khan
, “
Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids
,”
J. Phys. D: Appl. Phys.
12
,
1411
1421
(
1979
).
3.
U.
Hammerschmidt
and
W.
Sabuga
, “
Transient hot wire (THW) method: Uncertainty assessment
,”
Int. J. Thermophys.
21
,
1255
1278
(
2000
).
4.
D.
Salmon
, “
Thermal conductivity of insulations using guarded hot plates, including recent developments and sources of reference materials
,”
Meas. Sci. Technol.
12
,
R89
R98
(
2001
).
5.
Y.
Jannot
,
V.
Felix
, and
A.
Degiovanni
, “
A centered hot plate method for measurement of thermal properties of thin insulating materials
,”
Meas. Sci. Technol.
21
,
035106
(
2010
).
6.
V.
Scoarnec
,
J.
Hameury
, and
B.
Hay
, “
A new guarded hot plate designed for thermal-conductivity measurements at high temperature
,”
Int. J. Thermophys.
36
,
540
556
(
2015
).
7.
T.
Pavlov
,
L.
Vlahovic
,
D.
Staicu
,
R.
Konings
,
M.
Wenman
,
P. V.
Van Uffelen
, and
R.
Grimes
, “
A new numerical method and modified apparatus for the simultaneous evaluation of thermo-physical properties above 1500K: A case study on isostatically pressed graphite
,”
Thermochim. Acta
652
,
39
52
(
2017
).
8.
C.
Ronchi
,
W.
Heinz
,
M.
Musella
,
R.
Selfslag
, and
M.
Sheindlin
, “
A universal laser-pulse apparatus for thermophysical measurements in refractory materials at very high temperatures
,”
Int. J. Thermophys.
20
,
987
996
(
1999
).
9.
S.E37.05, Standard test method for thermal diffusivity by the flash method, Standard ASTM E1461-13,
ASTM International
,
West Conshohocken, PA
,
2013
.
10.
T.
Pavlov
,
T.
Wangle
,
M.
Wenman
,
V.
Tyrpekl
,
L.
Vlahovic
,
D.
Robba
,
P.
Van Uffelen
,
R.
Konings
, and
R.
Grimes
, “
High temperature measurements and condensed matter analysis of the thermo-physical properties of ThO2
,”
Sci. Rep.
8
,
5038
(
2018
).
11.
B.
Hay
,
S.
Barré
,
J.-R.
Filtz
,
M.
Jurion
,
D.
Rochais
, and
P.
Sollet
, “
New apparatus for thermal diffusivity and specific heat measurements at very high temperature
,”
Int. J. Thermophys.
27
,
1803
1815
(
2006
).
12.
J.
Habainy
,
Y.
Dai
,
Y.
Lee
, and
S.
Iyengar
, “
Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa
,”
J. Nucl. Mater.
509
,
152
157
(
2018
).
13.
M.
Uchida
,
E.
Ishitsuka
, and
H.
Kawamura
, “
Thermal conductivity of neutron irradiated Be12Ti
,”
Fusion Eng. Des.
69
,
499
503
(
2003
), 22nd Symposium on Fusion Technology.
14.
C.
Walker
,
D.
Staicu
,
M.
Sheindlin
,
D.
Papaioannou
,
W.
Goll
, and
F.
Sontheimer
, “
On the thermal conductivity of UO2 nuclear fuel at a high burn-up of around 100 MWd/kgHM
,”
J. Nucl. Mater.
350
,
19
39
(
2006
).
15.
J.
Blumm
and
A.
Lindemann
, “
Characterization of the thermophysical properties of molten polymers and liquids using the flash technique
,”
High Temp. - High Pressures
35-36
,
627
(
2003
).
16.
T.
Baba
and
A.
Ono
, “
Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements
,”
Meas. Sci. Technol.
12
,
2046
2057
(
2001
).
17.
M.
Sheindlin
,
D.
Halton
,
M.
Musella
, and
C.
Ronchi
, “
Advances in the use of laser-flash techniques for thermal diffusivity measurement
,”
Rev. Sci. Instrum.
69
,
1426
1436
(
1998
).
18.
T.
Šrámková
and
T.
Log
, “
Using non-linear χ2 fit in flash method
,”
Int. J. Heat Mass Transfer
38
,
2885
2891
(
1995
).
19.
E. J.
Carr
, “
Rear-surface integral method for calculating thermal diffusivity from laser flash experiments
,”
Chem. Eng. Sci.
199
,
546
551
(
2019
).
20.
E. J.
Carr
and
C. J.
Wood
, “
Rear-surface integral method for calculating thermal diffusivity: Finite pulse time correction and two-layer samples
,”
Int. J. Heat Mass Transfer
144
,
118609
(
2019
).
21.
A.
Lunev
(
2020
). “
Kotik-coder/PULsE: PULsE v1.66
,” Zenodo,
Geneva, Switzerland
. .
22.
R. D.
Cowan
, “
Pulse method of measuring thermal diffusivity at high temperatures
,”
J. Appl. Phys.
34
,
926
927
(
1963
).
23.
J. A.
Cape
and
G. W.
Lehman
, “
Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity
,”
J. Appl. Phys.
34
,
1909
1913
(
1963
).
24.
L. M.
Clark
 III
and
R. E.
Taylor
, “
Radiation loss in the flash method for thermal diffusivity
,”
J. Appl. Phys.
46
,
714
719
(
1975
).
25.
M.-A.
Thermitus
and
M.
Laurent
, “
New logarithmic technique in the flash method
,”
Int. J. Heat Mass Transfer
40
,
4183
4190
(
1997
).
26.
K. B.
Larson
and
K.
Koyama
, “
Correction for finite-pulse-time effects in very thin samples using the flash method of measuring thermal diffusivity
,”
J. Appl. Phys.
38
,
465
474
(
1967
).
27.
T.
Azumi
and
Y.
Takahashi
, “
Novel finite pulse-width correction in flash thermal diffusivity measurement
,”
Rev. Sci. Instrum.
52
,
1411
1413
(
1981
).
28.
T.
Lechner
and
E.
Hahne
, “
Finite pulse time effects in flash diffusivity measurements
,”
Thermochim. Acta
218
,
341
350
(
1993
).
29.
V.
Avduevskii
,
Y. I.
Danilov
,
V.
Koshkin
,
I.
Kutyrin
,
M.
Mikhailova
,
Y. S.
Mikheev
, and
O.
Sergel
,
Fundamentals of Heat Transfer in Aeronautics and Rocket Technology
(
Mashinostroenie
,
Moscow
,
1975
).
30.
V. G.
Baranov
,
Y. N.
Devyatko
,
A. V.
Tenishev
,
A. V.
Khlunov
, and
O. V.
Khomyakov
, “
New method for determining the temperature dependence of the thermal conductivity coefficient of dielectrics in a pulse experiment
,”
Inorg. Mater.: Appl. Res.
1
,
167
173
(
2010
).
31.
R. C.
Heckman
, “
Finite pulse-time and heat-loss effects in pulse thermal diffusivity measurements
,”
J. Appl. Phys.
44
,
1455
1460
(
1973
).
32.
D.
Josell
,
J.
Warren
, and
A.
Cezairliyan
, “
Comment on “Analysis for determining thermal diffusivity from thermal pulse experiments”
,”
J. Appl. Phys.
78
,
6867
6869
(
1995
).
33.
J.
Blumm
and
J.
Opfermann
, “
Improvement of the mathematical modeling of flash measurements
,”
High Temp. - High Pressures
34
,
515
521
(
2002
).
34.
A.
Philipp
,
J. F.
Eichinger
,
R. C.
Aydin
,
A.
Georgiadis
,
C. J.
Cyron
, and
M.
Retsch
, “
The accuracy of laser flash analysis explored by finite element method and numerical fitting
,”
Heat Mass Transfer
56
,
811
823
(
2019
).
35.
A. A.
Samarskii
,
The Theory of Difference Schemes
(
CRC Press
,
2001
).
36.
P. E.
Gill
,
W.
Murray
, and
M. H.
Wright
,
Practical Optimization
(
Academic Press
,
London
,
1981
), p.
1981
.
37.
P.
Wolfe
, “
Convergence conditions for ascent methods
,”
SIAM Rev.
11
,
226
235
(
1969
).
38.
P.
Wolfe
, “
Convergence conditions for ascent methods. II: Some corrections
,”
SIAM Rev.
13
,
185
188
(
1971
).
39.
V.
Baranov
,
A.
Tenishev
,
A.
Lunev
,
S.
Pokrovskii
, and
A.
Khlunov
, “
High-temperature measurements of the thermal conductivity of reactor materials by the laser flash method
,”
Yad. Fiz. Inzhin
2
,
291
302
(
2011
) (in Russian).
40.
G.
Fulton
and
A.
Lunev
, “
Probing the correlation between phase evolution and growth kinetics in the oxide layers of tungsten using Raman spectroscopy and EBSD
,”
Corros. Sci.
162
,
108221
(
2019
).
41.
H.
Wang
and
R. B.
Dinwiddie
, “
Reliability of laser flash thermal diffusivity measurements of the thermal barrier coatings
,”
J. Therm. Spray Technol.
9
,
210
214
(
2000
).

Supplementary Material

You do not currently have access to this content.