Photothermal excitation of the cantilever for use in subsurface imaging with atomic force microscopy was compared against traditional piezoelectric excitation. Photothermal excitation alleviates issues commonly found in traditional piezoelectrics such as spurious resonances by producing clean resonance peaks through direct cantilever excitation. A calibration specimen consisting of a 3 × 3 array of holes ranging from 200 to 30 nm etched into silicon and covered by graphite was used to compare these two drive mechanisms. Photothermal excitation exhibited a signal-to-noise ratio as high as four times when compared to piezoelectric excitation, utilizing higher eigenmodes for subsurface imaging. The cleaner and sharper resonance peaks obtained using photothermal excitation revealed all subsurface holes down to 30 nm through 135 nm of graphite. In addition, we demonstrated the ability of using photothermal excitation to detect the contact quality variation and evolution at graphite–polymer interfaces, which is critical in graphene-based nanocomposites, flexible electronics, and functional coatings.

1.
U.
Rabe
and
W.
Arnold
,
Appl. Phys. Lett.
64
,
1493
(
1994
).
2.
O.
Kolosov
and
K.
Yamanaka
,
Jpn. J. Appl. Phys.
32
,
L1095
(
1993
).
3.
A.
Striegler
,
B.
Koehler
,
B.
Bendjus
,
M.
Roellig
,
M.
Kopycinska-Mueller
, and
N.
Meyendorf
,
Ultramicroscopy
111
,
1405
(
2011
).
4.
J. P.
Killgore
,
J. Y.
Kelly
,
C. M.
Stafford
,
M. J.
Fasolka
, and
D. C.
Hurley
,
Nanotechnology
22
,
175706
(
2011
).
5.
K.
Kimura
,
K.
Kobayashi
,
K.
Matsushige
, and
H.
Yamada
,
Ultramicroscopy
133
,
41
(
2013
).
6.
O.
Kolosov
,
M.
Castell
,
C.
Marsh
,
G.
Briggs
,
T.
Kamins
, and
R.
Williams
,
Phys. Rev. Lett.
81
,
1046
(
1998
).
7.
Z.
Parlak
and
F.
Levent Degertekin
,
J. Appl. Phys.
103
,
114910
(
2008
).
8.
K.
Kimura
,
K.
Kobayashi
,
A.
Yao
, and
H.
Yamada
,
Nanotechnology
27
,
415707
(
2016
).
9.
C.
Ma
,
Y.
Chen
,
W.
Arnold
, and
J.
Chu
,
J. Appl. Phys.
121
,
154301
(
2017
).
10.
K.
Yamanaka
,
H.
Ogiso
, and
O.
Kolosov
,
Appl. Phys. Lett.
64
,
178
(
1994
).
11.
K.
Yamanaka
,
H.
Ogiso
, and
O.
Kolosov
,
Jpn. J. Appl. Phys.
33
,
3197
(
1994
).
12.
F.
Dinelli
,
M. R.
Castell
,
D. A.
Ritchie
,
N. J.
Mason
,
G. A. D.
Briggs
, and
O. V.
Kolosov
,
Philos. Mag. A
80
,
2299
(
2000
).
13.
A. P.
McGuigan
,
B. D.
Huey
,
G. A. D.
Briggs
,
O. V.
Kolosov
,
Y.
Tsukahara
, and
M.
Yanaka
,
Appl. Phys. Lett.
80
,
1180
(
2002
).
14.
M. T.
Cuberes
,
H. E.
Assender
,
G. A. D.
Briggs
, and
O. V.
Kolosov
,
J. Phys. D: Appl. Phys.
33
,
2347
(
2000
).
15.
G. S.
Shekhawat
and
V. P.
Dravid
,
Science
310
,
89
(
2005
).
16.
L.
Tetard
,
A.
Passian
,
K. T.
Venmar
,
R. M.
Lynch
,
B. H.
Voy
,
G.
Shekhawat
,
V. P.
Dravid
, and
T.
Thundat
,
Nat. Nanotechnol.
3
,
501
(
2008
).
17.
G.
Shekhawat
,
A.
Srivastava
,
S.
Avasthy
, and
V.
Dravid
,
Appl. Phys. Lett.
95
,
93
(
2009
).
18.
L.
Tetard
,
A.
Passian
,
R. H.
Farahi
, and
T.
Thundat
,
Ultramicroscopy
110
,
586
(
2010
).
19.
G. J.
Verbiest
,
J. N.
Simon
,
T. H.
Oosterkamp
, and
M. J.
Rost
,
Nanotechnology
23
,
499501
(
2012
).
20.
U.
Rabe
,
S.
Hirsekorn
,
M.
Reinstädtler
,
T.
Sulzbach
,
C.
Lehrer
, and
W.
Arnold
,
Nanotechnology
18
,
044008
(
2007
).
21.
M. H.
van Es
,
A.
Mohtashami
,
R. M. T.
Thijssen
,
D.
Piras
,
P. L. M. J.
van Neer
, and
H.
Sadeghian
,
Ultramicroscopy
184
,
209
(
2018
).
22.
S. A.
Cantrell
,
J. H.
Cantrell
, and
P. T.
Lillehei
,
J. Appl. Phys.
101
,
114324
(
2007
).
23.
U.
Rabe
,
S.
Amelio
,
M.
Kopycinska
,
S.
Hirsekorn
,
M.
Kempf
,
M.
Göken
, and
W.
Arnold
,
Surf. Interface Anal.
33
,
65
(
2002
).
24.
G. C.
Ratcliff
,
D. A.
Erie
, and
R.
Superfine
,
Appl. Phys. Lett.
72
,
1911
(
1998
).
25.
T. E.
Schäffer
,
J. P.
Cleveland
,
F.
Ohnesorge
,
D. A.
Walters
, and
P. K.
Hansma
,
J. Appl. Phys.
80
,
3622
(
1996
).
26.
M. E.
van Reijzen
,
M. S.
Tamer
,
M. H.
van Es
,
M. M. C. J. M.
van Riel
,
S.
Keyvani
,
H.
Sadeghian
, and
M.
van der Lans
,
Proc. SPIE
10959
,
19
(
2019
).
27.
K.
Yip
,
T.
Cui
,
Y.
Sun
, and
T.
Filleter
,
Nanoscale
11
,
10961
(
2019
).
28.
C.
Ma
,
W.
Wang
,
Y.
Chen
,
W.
Arnold
, and
J.
Chu
,
J. Appl. Phys.
126
,
124302
(
2019
).
29.
L.
Tetard
,
A.
Passian
,
R. M.
Lynch
,
B. H.
Voy
,
G.
Shekhawat
,
V.
Dravid
, and
T.
Thundat
,
Appl. Phys. Lett.
93
,
133113
(
2008
).
30.
H.
Chen
,
M. B.
Müller
,
K. J.
Gilmore
,
G. G.
Wallace
, and
D.
Li
,
Adv. Mater.
20
,
3557
(
2008
).
31.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
,
109
(
2009
); arXiv:0709.1163.
32.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
,
385
(
2008
).
33.
G.
Eda
,
G.
Fanchini
, and
M.
Chhowalla
,
Nat. Nanotechnol.
3
,
270
(
2008
).
34.
K. S.
Kim
,
Y.
Zhao
,
H.
Jang
,
S. Y.
Lee
,
J. M.
Kim
,
K. S.
Kim
,
J.-H.
Ahn
,
P.
Kim
,
J.-Y.
Choi
, and
B. H.
Hong
,
Nature
457
,
706
(
2009
).
35.
T.
Jiang
,
R.
Huang
, and
Y.
Zhu
,
Adv. Funct. Mater.
24
,
396
(
2014
).
36.
L.
Gong
,
I. A.
Kinloch
,
R. J.
Young
,
I.
Riaz
,
R.
Jalil
, and
K. S.
Novoselov
,
Adv. Mater.
22
,
2694
(
2010
).
37.
A.
Labuda
,
K.
Kobayashi
,
Y.
Miyahara
, and
P.
Grütter
,
Rev. Sci. Instrum.
83
,
053703
(
2012
).
38.
N.
Umeda
,
J. Vac. Sci. Technol. B
9
,
1318
(
1991
).
39.
G.
Rousset
,
F.
Lepoutre
, and
L.
Bertrand
,
J. Appl. Phys.
54
,
2383
(
1983
).
40.
C.
Ma
,
Y.
Chen
, and
T.
Wang
,
AIP Adv.
5
,
027116
(
2015
).
41.
A. F.
Sarioglu
,
A.
Atalar
, and
F. L.
Degertekin
,
Appl. Phys. Lett.
84
,
5368
(
2004
).
42.
J. S.
Alden
,
A. W.
Tsen
,
P. Y.
Huang
,
R.
Hovden
,
L.
Brown
,
J.
Park
,
D. A.
Muller
, and
P. L.
McEuen
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
11256
(
2013
).
43.
T.
Tsuji
and
K.
Yamanaka
,
Nanotechnology
12
,
301
(
2001
).

Supplementary Material

You do not currently have access to this content.