We present a high-resolution, simple, and versatile system for imaging ultracold Rydberg atoms in optical lattices. The imaging objective is a single aspheric lens [with a working distance of 20.6 mm and a numerical aperture (NA) of 0.51] placed inside the vacuum chamber. Adopting a large-working-distance lens leaves room for electrodes and electrostatic shields to control electric fields around Rydberg atoms. With this setup, we achieve a Rayleigh resolution of 1.10 μm or 1.41λ (λ = 780 nm), limited by the NA of the aspheric lens. For systems of highly excited Rydberg states with blockade radii greater than a few μm, the resolution achieved is sufficient for studying many physical processes of interest.

1.
W. S.
Bakr
,
J. I.
Gillen
,
A.
Peng
,
S.
Fölling
, and
M.
Greiner
,
Nature
462
,
74
(
2009
).
2.
N.
Gemelke
,
X.
Zhang
,
C.-L.
Hung
, and
C.
Chin
,
Nature
460
,
995
(
2009
).
3.
J. F.
Sherson
,
C.
Weitenberg
,
M.
Endres
,
M.
Cheneau
,
I.
Bloch
, and
S.
Kuhr
,
Nature
467
,
68
(
2010
).
4.
M. F.
Parsons
,
F.
Huber
,
A.
Mazurenko
,
C. S.
Chiu
,
W.
Setiawan
,
K.
Wooley-Brown
,
S.
Blatt
, and
M.
Greiner
,
Phys. Rev. Lett.
114
,
213002
(
2015
).
5.
L. W.
Cheuk
,
M. A.
Nichols
,
M.
Okan
,
T.
Gersdorf
,
V. V.
Ramasesh
,
W. S.
Bakr
,
T.
Lompe
, and
M. W.
Zwierlein
,
Phys. Rev. Lett.
114
,
193001
(
2015
).
6.
E.
Haller
,
J.
Hudson
,
A.
Kelly
,
D. A.
Cotta
,
B.
Peaudecerf
,
G. D.
Bruce
, and
S.
Kuhr
,
Nat. Phys.
11
,
738
(
2015
).
7.
M.
Miranda
,
R.
Inoue
,
Y.
Okuyama
,
A.
Nakamoto
, and
M.
Kozuma
,
Phys. Rev. A
91
,
063414
(
2015
).
8.
C.
Picken
,
R.
Legaie
, and
J.
Pritchard
,
Appl. Phys. Lett.
111
,
164102
(
2017
).
9.
R.
Yamamoto
,
J.
Kobayashi
,
K.
Kato
,
T.
Kuno
,
Y.
Sakura
, and
Y.
Takahashi
,
Phys. Rev. A
96
,
033610
(
2017
).
10.
M.
Gempel
,
T.
Hartmann
,
T.
Schulze
,
K.
Voges
,
A.
Zenesini
, and
S.
Ospelkaus
,
Rev. Sci. Instrum.
90
,
053201
(
2019
).
11.
B.
Yang
,
H.
Sun
,
R.
Ott
,
H.-Y.
Wang
,
T. V.
Zache
,
J. C.
Halimeh
,
Z.-S.
Yuan
,
P.
Hauke
, and
J.-W.
Pan
, arXiv:2003.08945 (
2020
).
12.
K. D.
Nelson
,
X.
Li
, and
D. S.
Weiss
,
Nat. Phys.
3
,
556
(
2007
).
13.
C.
Chin
,
R.
Grimm
,
P.
Julienne
, and
E.
Tiesinga
,
Rev. Mod. Phys.
82
,
1225
(
2010
).
14.
Y.
Cui
,
M.
Deng
,
L.
You
,
B.
Gao
, and
M. K.
Tey
,
Phys. Rev. A
98
,
042708
(
2018
).
15.
M.
Saffman
,
T. G.
Walker
, and
K.
Mølmer
,
Rev. Mod. Phys.
82
,
2313
(
2010
).
16.
W. S.
Bakr
,
A.
Peng
,
M. E.
Tai
,
R.
Ma
,
J.
Simon
,
J. I.
Gillen
,
S.
Folling
,
L.
Pollet
, and
M.
Greiner
,
Science
329
,
547
(
2010
).
17.
A.
Mazurenko
,
C. S.
Chiu
,
G.
Ji
,
M. F.
Parsons
,
M.
Kanász-Nagy
,
R.
Schmidt
,
F.
Grusdt
,
E.
Demler
,
D.
Greif
, and
M.
Greiner
,
Nature
545
,
462
(
2017
).
18.
A.
Keesling
,
A.
Omran
,
H.
Levine
,
H.
Bernien
,
H.
Pichler
,
S.
Choi
,
R.
Samajdar
,
S.
Schwartz
,
P.
Silvi
,
S.
Sachdev
et al.,
Nature
568
,
207
(
2019
).
19.
H.
Bernien
,
S.
Schwartz
,
A.
Keesling
,
H.
Levine
,
A.
Omran
,
H.
Pichler
,
S.
Choi
,
A. S.
Zibrov
,
M.
Endres
,
M.
Greiner
et al.,
Nature
551
,
579
(
2017
).
20.
H.
Kim
,
Y.
Park
,
K.
Kim
,
H.-S.
Sim
, and
J.
Ahn
,
Phys. Rev. Lett.
120
,
180502
(
2018
).
21.
N.
Takei
,
C.
Sommer
,
C.
Genes
,
G.
Pupillo
,
H.
Goto
,
K.
Koyasu
,
H.
Chiba
,
M.
Weidemüller
, and
K.
Ohmori
,
Nat. Commun.
7
,
13449
(
2016
).
22.
A.
Browaeys
and
T.
Lahaye
,
Nat. Phys.
16
,
132
(
2020
).
23.
Q.
Xie
, “
Development and application of a quantum gas microscope
,” Ph.D. thesis,
USTC
,
2018
.
24.
G.
Gunter
,
H.
Schempp
,
M.
Robert-de-Saint-Vincent
,
V.
Gavryusev
,
S.
Helmrich
,
C. S.
Hofmann
,
S.
Whitlock
, and
M.
Weidemuller
,
Science
342
,
954
(
2013
).
25.
F.
Yang
,
S.
Yang
, and
L.
You
,
Phys. Rev. Lett.
123
,
063001
(
2019
).
26.
S.
Hollerith
,
J.
Zeiher
,
J.
Rui
,
A.
Rubio-Abadal
,
V.
Walther
,
T.
Pohl
,
D.
Stamper-Kurn
,
I.
Bloch
, and
C.
Gross
,
Science
364
,
664
(
2019
).
27.
P.
Schaus
,
M.
Cheneau
,
M.
Endres
,
T.
Fukuhara
,
S.
Hild
,
A.
Omran
,
T.
Pohl
,
C.
Gross
,
S.
Kuhr
, and
I.
Bloch
,
Nature
491
,
87
(
2012
).
28.
D.
Tong
,
S. M.
Farooqi
,
J.
Stanojevic
,
S.
Krishnan
,
Y. P.
Zhang
,
R.
Côté
,
E. E.
Eyler
, and
P. L.
Gould
,
Phys. Rev. Lett.
93
,
063001
(
2004
).
29.
R.
Heidemann
,
U.
Raitzsch
,
V.
Bendkowsky
,
B.
Butscher
,
R.
Löw
,
L.
Santos
, and
T.
Pfau
,
Phys. Rev. Lett.
99
,
163601
(
2007
).
30.
R.
Faoro
,
B.
Pelle
,
A.
Zuliani
,
P.
Cheinet
,
E.
Arimondo
, and
P.
Pillet
,
Nat. Commun.
6
,
8173
(
2015
).
31.
Y.
Zeng
,
P.
Xu
,
X.
He
,
Y.
Liu
,
M.
Liu
,
J.
Wang
,
D. J.
Papoular
,
G. V.
Shlyapnikov
, and
M.
Zhan
,
Phys. Rev. Lett.
119
,
160502
(
2017
).
32.
T.
Cubel
,
B. K.
Teo
,
V. S.
Malinovsky
,
J. R.
Guest
,
A.
Reinhard
,
B.
Knuffman
,
P. R.
Berman
, and
G.
Raithel
,
Phys. Rev. A
72
,
023405
(
2005
).
33.
R.
Löw
,
A Versatile Setup for Experiments With Rubidium Bose Einstein Condensates: From Optical Lattices to Rydberg Matter
(
Verlag Dr. Hut
,
2006
).
34.
C.
Weitenberg
, “
Single-atom resolved imaging and manipulation in an atomic Mott insulator
,” Ph.D. thesis,
LMU
,
2011
.
35.
K.
Bergmann
,
H.
Theuer
, and
B.
Shore
,
Rev. Mod. Phys.
70
,
1003
(
1998
).
36.
In 15µs, recoils from the 480-nm and 780-nm photons would move the atoms over 230 nm, much smaller than the 2.2-µm lattice spacing in the Z-direction.
You do not currently have access to this content.