We present a high-resolution, simple, and versatile system for imaging ultracold Rydberg atoms in optical lattices. The imaging objective is a single aspheric lens [with a working distance of 20.6 mm and a numerical aperture (NA) of 0.51] placed inside the vacuum chamber. Adopting a large-working-distance lens leaves room for electrodes and electrostatic shields to control electric fields around Rydberg atoms. With this setup, we achieve a Rayleigh resolution of 1.10 μm or 1.41λ (λ = 780 nm), limited by the NA of the aspheric lens. For systems of highly excited Rydberg states with blockade radii greater than a few μm, the resolution achieved is sufficient for studying many physical processes of interest.
REFERENCES
1.
W. S.
Bakr
, J. I.
Gillen
, A.
Peng
, S.
Fölling
, and M.
Greiner
, Nature
462
, 74
(2009
).2.
N.
Gemelke
, X.
Zhang
, C.-L.
Hung
, and C.
Chin
, Nature
460
, 995
(2009
).3.
J. F.
Sherson
, C.
Weitenberg
, M.
Endres
, M.
Cheneau
, I.
Bloch
, and S.
Kuhr
, Nature
467
, 68
(2010
).4.
M. F.
Parsons
, F.
Huber
, A.
Mazurenko
, C. S.
Chiu
, W.
Setiawan
, K.
Wooley-Brown
, S.
Blatt
, and M.
Greiner
, Phys. Rev. Lett.
114
, 213002
(2015
).5.
L. W.
Cheuk
, M. A.
Nichols
, M.
Okan
, T.
Gersdorf
, V. V.
Ramasesh
, W. S.
Bakr
, T.
Lompe
, and M. W.
Zwierlein
, Phys. Rev. Lett.
114
, 193001
(2015
).6.
E.
Haller
, J.
Hudson
, A.
Kelly
, D. A.
Cotta
, B.
Peaudecerf
, G. D.
Bruce
, and S.
Kuhr
, Nat. Phys.
11
, 738
(2015
).7.
M.
Miranda
, R.
Inoue
, Y.
Okuyama
, A.
Nakamoto
, and M.
Kozuma
, Phys. Rev. A
91
, 063414
(2015
).8.
C.
Picken
, R.
Legaie
, and J.
Pritchard
, Appl. Phys. Lett.
111
, 164102
(2017
).9.
R.
Yamamoto
, J.
Kobayashi
, K.
Kato
, T.
Kuno
, Y.
Sakura
, and Y.
Takahashi
, Phys. Rev. A
96
, 033610
(2017
).10.
M.
Gempel
, T.
Hartmann
, T.
Schulze
, K.
Voges
, A.
Zenesini
, and S.
Ospelkaus
, Rev. Sci. Instrum.
90
, 053201
(2019
).11.
B.
Yang
, H.
Sun
, R.
Ott
, H.-Y.
Wang
, T. V.
Zache
, J. C.
Halimeh
, Z.-S.
Yuan
, P.
Hauke
, and J.-W.
Pan
, arXiv:2003.08945 (2020
).12.
K. D.
Nelson
, X.
Li
, and D. S.
Weiss
, Nat. Phys.
3
, 556
(2007
).13.
C.
Chin
, R.
Grimm
, P.
Julienne
, and E.
Tiesinga
, Rev. Mod. Phys.
82
, 1225
(2010
).14.
Y.
Cui
, M.
Deng
, L.
You
, B.
Gao
, and M. K.
Tey
, Phys. Rev. A
98
, 042708
(2018
).15.
M.
Saffman
, T. G.
Walker
, and K.
Mølmer
, Rev. Mod. Phys.
82
, 2313
(2010
).16.
W. S.
Bakr
, A.
Peng
, M. E.
Tai
, R.
Ma
, J.
Simon
, J. I.
Gillen
, S.
Folling
, L.
Pollet
, and M.
Greiner
, Science
329
, 547
(2010
).17.
A.
Mazurenko
, C. S.
Chiu
, G.
Ji
, M. F.
Parsons
, M.
Kanász-Nagy
, R.
Schmidt
, F.
Grusdt
, E.
Demler
, D.
Greif
, and M.
Greiner
, Nature
545
, 462
(2017
).18.
A.
Keesling
, A.
Omran
, H.
Levine
, H.
Bernien
, H.
Pichler
, S.
Choi
, R.
Samajdar
, S.
Schwartz
, P.
Silvi
, S.
Sachdev
et al., Nature
568
, 207
(2019
).19.
H.
Bernien
, S.
Schwartz
, A.
Keesling
, H.
Levine
, A.
Omran
, H.
Pichler
, S.
Choi
, A. S.
Zibrov
, M.
Endres
, M.
Greiner
et al., Nature
551
, 579
(2017
).20.
H.
Kim
, Y.
Park
, K.
Kim
, H.-S.
Sim
, and J.
Ahn
, Phys. Rev. Lett.
120
, 180502
(2018
).21.
N.
Takei
, C.
Sommer
, C.
Genes
, G.
Pupillo
, H.
Goto
, K.
Koyasu
, H.
Chiba
, M.
Weidemüller
, and K.
Ohmori
, Nat. Commun.
7
, 13449
(2016
).22.
A.
Browaeys
and T.
Lahaye
, Nat. Phys.
16
, 132
(2020
).23.
Q.
Xie
, “Development and application of a quantum gas microscope
,” Ph.D. thesis, USTC
, 2018
.24.
G.
Gunter
, H.
Schempp
, M.
Robert-de-Saint-Vincent
, V.
Gavryusev
, S.
Helmrich
, C. S.
Hofmann
, S.
Whitlock
, and M.
Weidemuller
, Science
342
, 954
(2013
).25.
F.
Yang
, S.
Yang
, and L.
You
, Phys. Rev. Lett.
123
, 063001
(2019
).26.
S.
Hollerith
, J.
Zeiher
, J.
Rui
, A.
Rubio-Abadal
, V.
Walther
, T.
Pohl
, D.
Stamper-Kurn
, I.
Bloch
, and C.
Gross
, Science
364
, 664
(2019
).27.
P.
Schaus
, M.
Cheneau
, M.
Endres
, T.
Fukuhara
, S.
Hild
, A.
Omran
, T.
Pohl
, C.
Gross
, S.
Kuhr
, and I.
Bloch
, Nature
491
, 87
(2012
).28.
D.
Tong
, S. M.
Farooqi
, J.
Stanojevic
, S.
Krishnan
, Y. P.
Zhang
, R.
Côté
, E. E.
Eyler
, and P. L.
Gould
, Phys. Rev. Lett.
93
, 063001
(2004
).29.
R.
Heidemann
, U.
Raitzsch
, V.
Bendkowsky
, B.
Butscher
, R.
Löw
, L.
Santos
, and T.
Pfau
, Phys. Rev. Lett.
99
, 163601
(2007
).30.
R.
Faoro
, B.
Pelle
, A.
Zuliani
, P.
Cheinet
, E.
Arimondo
, and P.
Pillet
, Nat. Commun.
6
, 8173
(2015
).31.
Y.
Zeng
, P.
Xu
, X.
He
, Y.
Liu
, M.
Liu
, J.
Wang
, D. J.
Papoular
, G. V.
Shlyapnikov
, and M.
Zhan
, Phys. Rev. Lett.
119
, 160502
(2017
).32.
T.
Cubel
, B. K.
Teo
, V. S.
Malinovsky
, J. R.
Guest
, A.
Reinhard
, B.
Knuffman
, P. R.
Berman
, and G.
Raithel
, Phys. Rev. A
72
, 023405
(2005
).33.
R.
Löw
, A Versatile Setup for Experiments With Rubidium Bose Einstein Condensates: From Optical Lattices to Rydberg Matter
(Verlag Dr. Hut
, 2006
).34.
C.
Weitenberg
, “Single-atom resolved imaging and manipulation in an atomic Mott insulator
,” Ph.D. thesis, LMU
, 2011
.35.
K.
Bergmann
, H.
Theuer
, and B.
Shore
, Rev. Mod. Phys.
70
, 1003
(1998
).36.
In 15µs, recoils from the 480-nm and 780-nm photons would move the atoms over 230 nm, much smaller than the 2.2-µm lattice spacing in the Z-direction.
© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.