The next generation interferometric gravitational wave detectors require arm lengths measured in tens of kilometers, with each cavity storing megawatts of optical power. The beams are contained in ultrahigh vacuum pipes. Scattered interferometer light in the pipes may reenter the cavities and inject extra noise. The pipes are, therefore, provided with optical baffles necessary to eliminate the scattered light. The design of the vacuum pipes and of the optical baffles is tightly intertwined. We present a thorough discussion that opens the door to the design of an optimized stepped-diameter vacuum pipe system using novel helical baffles. Our analysis suggests that a more efficient pipe design (with special reference to scattered light) may use spiral baffles and sectioned stepped tubes.

1.
J. D.
Creighton
and
W. G.
Anderson
,
Gravitational Wave Physics and Astronomy
(
Wiley
,
2011
), ISBN: 978-3-527-40886-3.
2.
P.
Saulson
,
Fundamentals of Interferometric Gravitational Wave Detectors
(
World Scientific
,
2017
), ISBN: 978-9813143074.
3.
B. P.
Abbot
 et al, “
GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs
,”
Phys. Rev. X
9
(
3
),
031040
(
2018
).
4.
M. G.
Beker
 et al, “
Newtonian noise and ambient ground motion for gravitational wave detectors
,”
J. Phys.: Conf. Ser.
363
,
012004
(
2012
).
5.
G.
Vajente
 et al, “
Precision interferometry for gravitational-wave detection: Current status and future trends
,”
Adv. At., Mol., Opt. Phys.
68
,
75
148
(
2019
).
6.
C.
Zhao
 et al, “
Parametric instabilities and their control in advanced interferometer gravitational-wave detectors
,”
Phys. Rev. Lett.
94
(
12
),
121102
(
2005
).
7.
A.
Rocchi
 et al, “
Thermal effects and their compensation in advanced Virgo
,”
J. Phys.: Conf. Ser.
363
(
1
),
012016
(
2012
).
8.
A. F.
Brooks
 et al, “
Overview of advanced LIGO adaptive optics
,”
Appl. Opt.
55
(
29
),
8256
8265
(
2016
).
9.
W. A.
Carpenter
,
P. B.
Shaw
,
L.
Jones
, and
R.
Weiss
, “
Laser interferometer gravitational-wave observatory beam tube component and module leak testing
,”
J. Vac. Sci. Technol., A
18
,
1794
1799
(
2000
).
10.
M.
Bernardini
 et al, “
Air bake-out to reduce hydrogen outgassing from stainless steel
,”
J. Vac. Sci. Technol., A
16
,
188
193
(
1998
).
11.
J.-Y.
Vinet
,
V.
Brisson
, and
S.
Braccini
, “
Scattered light noise in gravitational wave interferometric detectors: Coherent effects
,”
Phys. Rev. D
54
,
1276
1286
(
1996
).
12.
R.
Takahashi
,
Y.
Saito
,
M.
Fukushima
,
M.
Ando
,
K.
Arai
,
D.
Tatsumi
,
G.
Heinzel
,
S.
Kawamura
,
T.
Yamazaki
, and
S.
Moriwaki
, “
Direct measurement of residual gas effect on the sensitivity in TAMA300
,”
J. Vac. Sci. Technol., A
20
,
1237
1241
(
2002
).
13.
J. B.
Keller
, “
Geometrical theory of diffraction
,”
J. Opt. Soc. Am.
52
,
116
130
(
1962
).
14.
M.
Kline
, “
An asymptotic solution of Maxwell’s equations
,”
Commun. Pure Appl. Math.
4
,
225
262
(
1951
).
15.
R. G.
Kouyoumjian
and
P. H.
Pathak
, “
A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface
,”
Proc. IEEE
62
,
1448
1461
(
1974
).
16.
P.
Ya. Ufimtsev
,
Method of Edge Waves in the Physical Theory of Diffraction
(
Soviet Radio
,
Moscow
,
1962
); translated into English by the US Air Force (
Foreign Technology Division (National Air Intelligence Center)
,
Wright-Patterson Air Force Base, OH
,
1971
), Technical Report AD 733203
Defense Technical Information Center of USA, Cameron Station
,
Alexandria, VA, USA
,
1962
.
17.
P. Ya.
Ufimtsev
,
Fundamentals of the Physical Theory of Diffraction
(
John Wiley & Sons, Inc.
,
Hoboken, NJ, USA
,
2007
).
18.
G. G.
Gentili
,
G.
Pelosi
,
M.
Righini
, and
S.
Selleri
, “
Fringe currents evaluation on a perfectly conducting wedge illuminated by an elementary dipole
,”
IEEE Antennas Wireless Propag. Lett.
17
,
438
441
(
2018
).
19.
K. M.
Mitzner
, “
Incremental length diffraction coefficients
,” Technical Report AFAL-TR-73-296,
Nortrop Corporation
,
1974
.
20.
E.
Knott
, “
The relationship between Mitzner’s ILDC and Michaeli’s equivalent currents
,”
IEEE Trans. Antennas Propag.
33
,
112
114
(
1985
).
21.
B.
Willke
,
P.
Aufmuth
,
C.
Aulbert
,
S.
Babak
,
R.
Balasubramanian
,
B. W.
Barr
,
S.
Berukoff
et al., “
The GEO 600 gravitational wave detector
,”
Class. Quantum Grav.
19
(
7
),
1377
(
2002
).
22.
H.
Lück
and Geo600 Team, “
The vacuum system of GEO600
,” in
Second Edoardo Amaldi Conference on Gravitational Wave Experiments
, edited by
E.
Coccia
,
G.
Veneziano
, and
G.
Pizzella
(
World Scientific
,
Singapore, 1998
), pp.
56
359
.
23.
NSF Workshop on Large Ultrahigh-Vacuum Systems for Frontier Scientific Research Instrumentation
, edited by
H.
Dylla
,
R.
Weiss
, and
M. E.
Zucker
, LIGO-P1900072-v1, available at https://dcc.ligo.org/public/0158/P1900072/001/P1900072-v1.pdf.
24.
M.
Abernathy
 et al,
Einstein Gravitational Wave Telescope Conceptual Design Study: ET-0106C-10
,
2011
available at https://tds.virgo-gw.eu/?call_file=ET-0106C-10.pdf.
25.
S.
Sunil
and
D. G.
Blair
, “
Investigation of vacuum system requirements for a 5 km baseline gravitational-wave detector
,”
J. Vac. Sci. Technol., A
25
,
763
768
(
2007
).
26.
T.
Accadia
 et al, “
Virgo: A laser interferometer to detect gravitational waves
,”
J. Instrum.
7
(
03
),
P03012
(
2012
).
27.
J. R. J.
Bennett
 et al, “
Outgassing from stainless steel and the effects of the gauges
,”
Vacuum
73
(
2
),
149
153
(
2004
).
28.
K.
Odaka
and
S.
Ueda
, “
Outgassing reduction of type 304 stainless steel by surface oxidation in air
,”
J. Vac. Sci. Technol., A
13
(
3
),
520
523
(
1995
).
29.
S.
Hild
 et al, “
A xylophone configuration for a third-generation gravitational wave detector
,”
Classical Quantum Gravity
27
,
015003
(
2010
).
30.
C.
Park
 et al, “
Thermal outgassing rates of low-carbon steels
,”
J. Vac. Sci. Technol., A
34
(
2
),
021601
(
2016
).

Supplementary Material

You do not currently have access to this content.