The design, implementation, and performance of a customized carbon atom beam source for the purpose of investigating solid-state reaction routes in interstellar ices in molecular clouds are discussed. The source is integrated into an existing ultrahigh vacuum setup, SURFace REaction SImulation DEvice (SURFRESIDE2), which extends this double atom (H/D, O, and N) beamline apparatus with a third atom (C) beamline to a unique system that is fully suited to explore complex organic molecule solid-state formation under representative interstellar cloud conditions. The parameter space for this system is discussed, which includes the flux of the carbon atoms hitting the ice sample, their temperature, and the potential impact of temperature on ice reactions. Much effort has been put into constraining the beam size to within the limits of the sample size with the aim of reducing carbon pollution inside the setup. How the C-atom beam performs is quantitatively studied through the example experiment, C + 18O2, and supported by computationally derived activation barriers. The potential for this source to study the solid-state formation of interstellar complex organic molecules through C-atom reactions is discussed.

1.
E.
Herbst
and
E. F.
van Dishoeck
, “
Complex organic interstellar molecules
,”
Annu. Rev. Astron. Astrophys.
47
,
427
480
(
2009
).
2.
T.
Soma
,
N.
Sakai
,
Y.
Watanabe
, and
S.
Yamamoto
, “
Complex organic molecules in Taurus Molecular Cloud-1
,”
Astrophys. J.
854
,
116
(
2018
).
3.
A.
Bacmann
,
A.
Faure
, and
J.
Berteaud
, “
Cold and yet complex: Detection of ethylene oxide in a prestellar core
,”
ACS Earth Space Chem.
3
,
1000
1013
(
2019
).
4.
A.
Belloche
,
H. S.
Müller
,
K. M.
Menten
,
P.
Schilke
, and
C.
Comito
, “
Complex organic molecules in the interstellar medium: IRAM 30 m line survey of Sagittarius B2(N) and (M)
,”
Astron. Astrophys.
559
,
A47
(
2013
).
5.
A.
Belloche
,
H.
Müller
,
R.
Garrod
, and
K.
Menten
, “
Exploring molecular complexity with ALMA (EMoCA): Deuterated complex organic molecules in Sagittarius B2(N2)
,”
Astron. Astrophys.
587
,
A91
(
2016
).
6.
J. M.
Lykke
,
A.
Coutens
,
J. K.
Jørgensen
,
M. H. D.
van der Wiel
,
R. T.
Garrod
,
H.
Müller
,
P.
Bjerkeli
,
T.
Bourke
,
H.
Calcutt
,
M.
Drozdovskaya
, and
C.
Favre
, “
The ALMA-PILS survey: First detections of ethylene oxide, acetone and propanal toward the low-mass protostar IRAS 16293-2422
,”
Astron. Astrophys.
597
,
A53
(
2017
).
7.
R. T.
Garrod
and
E.
Herbst
, “
Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores
,”
Astron. Astrophys.
457
,
927
936
(
2006
).
8.
A. I.
Vasyunin
,
P.
Caselli
,
F.
Dulieu
, and
I.
Jiménez-Serra
, “
Formation of complex molecules in prestellar cores: A multilayer approach
,”
Astrophys. J.
842
,
33
(
2017
).
9.
K.-J.
Chuang
,
G.
Fedoseev
,
S.
Ioppolo
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
H-atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices–an extended view on complex organic molecule formation
,”
Mon. Not. R. Astron. Soc.
455
,
1702
1712
(
2016
).
10.
T.
Butscher
,
F.
Duvernay
,
A.
Rimola
,
M.
Segado-Centellas
, and
T.
Chiavassa
, “
Radical recombination in interstellar ices, a not so simple mechanism
,”
Phys. Chem. Chem. Phys.
19
,
2857
2866
(
2017
).
11.
G.
Fedoseev
,
K.-J.
Chuang
,
S.
Ioppolo
,
D.
Qasim
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
Formation of glycerol through hydrogenation of CO ice under prestellar core conditions
,”
Astrophys. J.
842
,
52
(
2017
).
12.
S.
Álvarez-Barcia
,
P.
Russ
,
J.
Kästner
, and
T.
Lamberts
, “
Hydrogen transfer reactions of interstellar complex organic molecules
,”
Mon. Not. R. Astron. Soc.
479
,
2007
2015
(
2018
).
13.
T.
Lamberts
,
M. N.
Markmeyer
,
F. J.
Kolb
, and
J.
Kästner
, “
Formation of acetaldehyde on CO-rich ices
,”
ACS Earth Space Chem.
3
,
958
963
(
2019
).
14.
A.
Tielens
and
S.
Charnley
, “
Circumstellar and interstellar synthesis of organic molecules
,” in
Planetary and Interstellar Processes Relevant to the Origins of Life
(
Springer
,
1997
), pp.
23
51
.
15.
S.
Charnley
, “
Interstellar organic chemistry
,” in
The Bridge between the Big Bang and Biology: Stars, Planetary Systems, Atmospheres, Volcanoes: Their Link to Life
, edited by
F.
Giovannelli
(
SAO/NASA Astrophysics Data System
,
2001
), pp.
139
149
.
16.
S.
Charnley
and
S.
Rodgers
, “
Pathways to molecular complexity
,” in
Astrochemistry: Recent Successes and Current Challenges
, IAU Colloquium 231, edited by
D.
Lis
,
G.
Blake
, and
E.
Herbst
(
Cambridge University Press
,
2005
), Vol. 1, pp.
237
246
.
17.
S.
Charnley
and
S.
Rodgers
, “
Theoretical models of complex molecule formation on dust
,” in
Bioastronomy 2007: Molecules, Microbes and Extraterrestrial Life
, edited by
K. J.
Meech
,
J. V.
Keane
,
M. J.
Mumma
,
J. L.
Siefert
, and
D. J.
Werthimer
(
Astronomical Society of the Pacific
,
2009
), Vol. 420, p.
29
.
18.
M.
Requena-Torres
,
J.
Martín-Pintado
,
S.
Martín
, and
M.
Morris
, “
The galactic center: The largest oxygen-bearing organic molecule repository
,”
Astrophys. J.
672
,
352
360
(
2008
).
19.
M.
Simončič
,
D.
Semenov
,
S.
Krasnokutski
,
T.
Henning
, and
C.
Jäger
, “
Sensitivity of gas-grain chemical models to surface reaction barriers: Effect from a key carbon-insertion reaction, C + H2 → CH2
,”
Astron. Astrophys.
(in press).
20.
T.
Phillips
and
P.
Huggins
, “
Abundance of atomic carbon (CI) in dense interstellar clouds
,”
Astrophys. J.
251
,
533
540
(
1981
).
21.
E. F.
Van Dishoeck
,
J. H.
Black
 et al, “
The photodissociation and chemistry of interstellar CO
,”
Astrophys. J.
334
,
771
802
(
1988
).
22.
E.
Herbst
, “
Chemistry of star-forming regions
,”
J. Phys. Chem. A
109
,
4017
4029
(
2005
).
23.
E. F.
van Dishoeck
, “
The chemistry of diffuse and dark interstellar clouds
,” in
The Molecular Astrophysics of Stars and Galaxies
, edited by
T.
Hartquist
and
D.
Williams
(
Clarendon Press
,
Oxford
,
1998
), p.
53
.
24.
D.
Hollenbach
,
M. J.
Kaufman
,
E. A.
Bergin
, and
G. J.
Melnick
, “
Water, O2, and ice in molecular clouds
,”
Astrophys. J.
690
,
1497
(
2008
).
25.
V.
Taquet
,
S. B.
Charnley
, and
O.
Sipilä
, “
Multilayer formation and evaporation of deuterated ices in prestellar and protostellar cores
,”
Astrophys. J.
791
,
1
(
2014
).
26.
S.
Krasnokutski
,
M.
Kuhn
,
M.
Renzler
,
C.
Jäger
,
T.
Henning
, and
P.
Scheier
, “
Ultra-low-temperature reactions of carbon atoms with hydrogen molecules
,”
Astrophys. J.
818
,
L31
(
2016
).
27.
T. K.
Henning
and
S. A.
Krasnokutski
, “
Experimental characterization of the energetics of low-temperature surface reactions
,”
Nat. Astron.
3
,
568
(
2019
).
28.
S.
Krasnokutski
,
M.
Goulart
,
E.
Gordon
,
A.
Ritsch
,
C.
Jäger
,
M.
Rastogi
,
W.
Salvenmoser
,
T.
Henning
, and
P.
Scheier
, “
Low-temperature condensation of carbon
,”
Astrophys. J.
847
,
89
(
2017
).
29.
S.
Ioppolo
,
G.
Fedoseev
,
T.
Lamberts
,
C.
Romanzin
, and
H.
Linnartz
, “
SURFRESIDE2: An ultrahigh vacuum system for the investigation of surface reaction routes of interstellar interest
,”
Rev. Sci. Instrum.
84
,
073112
(
2013
).
30.
S.
Ioppolo
,
H.
Cuppen
,
C.
Romanzin
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
Water formation at low temperatures by surface O2 hydrogenation I: Characterization of ice penetration
,”
Phys. Chem. Chem. Phys.
12
,
12065
12076
(
2010
).
31.
D.
Qasim
,
G.
Fedoseev
,
T.
Lamberts
,
K.-J.
Chuang
,
J.
He
,
S.
Ioppolo
,
J.
Kästner
, and
H.
Linnartz
, “
Alcohols on the rocks: Solid-state formation in a H3CC ≡ CH + OH cocktail under dark cloud conditions
,”
ACS Earth Space Chem.
3
,
986
999
(
2019
).
32.
H.
Linnartz
,
S.
Ioppolo
, and
G.
Fedoseev
, “
Atom addition reactions in interstellar ice analogues
,”
Int. Rev. Phys. Chem.
34
,
205
237
(
2015
).
33.
A.
Boogert
,
P. A.
Gerakines
, and
D. C.
Whittet
, “
Observations of the icy universe
,”
Annu. Rev. Astron. Astrophys.
53
,
541
581
(
2015
).
34.
S.
Krasnokutski
and
F.
Huisken
, “
A simple and clean source of low-energy atomic carbon
,”
Appl. Phys. Lett.
105
,
113506
(
2014
).
35.
J.
Albar
,
A.
Summerfield
,
T. S.
Cheng
,
A.
Davies
,
E.
Smith
,
A. N.
Khlobystov
,
C.
Mellor
,
T.
Taniguchi
,
K.
Watanabe
,
C.
Foxon
 et al, “
An atomic carbon source for high temperature molecular beam epitaxy of graphene
,”
Sci. Rep.
7
,
6598
(
2017
).
36.
K.
Tschersich
and
V.
Von Bonin
, “
Formation of an atomic hydrogen beam by a hot capillary
,”
J. Appl. Phys.
84
,
4065
4070
(
1998
).
37.
K.
Tschersich
, “
Intensity of a source of atomic hydrogen based on a hot capillary
,”
J. Appl. Phys.
87
,
2565
2573
(
2000
).
38.
K.
Tschersich
,
J.
Fleischhauer
, and
H.
Schuler
, “
Design and characterization of a thermal hydrogen atom source
,”
J. Appl. Phys.
104
,
034908
(
2008
).
39.
D.
Qasim
,
G.
Fedoseev
,
K. J.
Chuang
,
J.
He
,
S.
Ioppolo
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
An experimental study of the surface formation of methane in interstellar molecular clouds
,”
Nature Astron.
(published online
2020
).
40.
A.
Kramida
,
Yu
Ralchenko
,
J.
Reader
, and
NIST ASD Team
, NIST Atomic Spectra Database (ver. 5.6.1),
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2018
, available: https://physics.nist.gov/asd; accessed: September 13, 2019.
41.
C.
Lin
and
M.
Leu
, “
Temperature and third-body dependence of the rate constant for the reaction O + O2 + M → O3 + M
,”
Int. J. Chem. Kinet.
14
,
417
434
(
1982
).
42.
K.-J.
Chuang
,
G.
Fedoseev
,
D.
Qasim
,
S.
Ioppolo
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
Reactive desorption of CO hydrogenation products under cold pre-stellar core conditions
,”
Astrophys. J.
853
,
102
(
2018
).
43.
K. W.
Kolasinski
,
Surface Science: Foundations of Catalysis and Nanoscience
(
John Wiley & Sons
,
West Chester, PA
,
2012
).
44.
S.
Ioppolo
,
K.
Öberg
, and
H.
Linnartz
, “
Solid-state pathways toward molecular complexity in space
,” in
Laboratory Astrochemistry: From Molecules through Nanoparticles to Grains
, edited by
S.
Schlemmer
,
T.
Giesen
, and
H.
Mutschke
(
John Wiley & Sons
,
2014
), Chap. 5.4, pp.
289
309
.
45.
M.
Bouilloud
,
N.
Fray
,
Y.
Bénilan
,
H.
Cottin
,
M.-C.
Gazeau
, and
A.
Jolly
, “
Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO
,”
Mon. Not. R. Astron. Soc.
451
,
2145
2160
(
2015
).
46.
J.
Meisner
,
T.
Lamberts
, and
J.
Kästner
, “
Atom tunneling in the water formation reaction H2 + OH → H2O+ H on an ice surface
,”
ACS Earth Space Chem.
1
,
399
410
(
2017
).
47.
TURBOMOLE, V7.0.01, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007,
TURBOMOLE GmbH
,
2007
, available at http://www.turbomole.com, 2018.
48.
P.
Sherwood
,
A. H.
de Vries
,
M. F.
Guest
,
G.
Schreckenbach
,
C. R. A.
Catlow
,
S. A.
French
,
A. A.
Sokol
,
S. T.
Bromley
,
W.
Thiel
,
A. J.
Turner
 et al, “
QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis
,”
J. Mol. Struct.: THEOCHEM
632
,
1
28
(
2003
).
49.
S.
Metz
,
J.
Kästner
,
A. A.
Sokol
,
T. W.
Keal
, and
P.
Sherwood
, “
ChemShell—A modular software package for QM/MM simulations
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
101
110
(
2014
).
50.
Y.
Zhao
and
D. G.
Truhlar
, “
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
241
(
2008
).
51.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
, “
RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency
,”
Chem. Phys. Lett.
294
,
143
152
(
1998
).
52.
J.
Kästner
,
J. M.
Carr
,
T. W.
Keal
,
W.
Thiel
,
A.
Wander
, and
P.
Sherwood
, “
DL-FIND: An open-source geometry optimizer for atomistic simulations
,”
J. Phys. Chem. A
113
,
11856
11865
(
2009
).
53.
G.
Henkelman
and
H.
Jónsson
, “
A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives
,”
J. Chem. Phys.
111
,
7010
7022
(
1999
).
54.
J.
Kästner
and
P.
Sherwood
, “
Superlinearly converging dimer method for transition state search
,”
J. Chem. Phys.
128
,
014106
(
2008
).
55.
J.
Meisner
,
M. N.
Markmeyer
,
M. U.
Bohner
, and
J.
Kästner
, “
Comparison of classical reaction paths and tunneling paths studied with the semiclassical instanton theory
,”
Phys. Chem. Chem. Phys.
19
,
23085
23094
(
2017
).
56.
H. P.
Hratchian
and
H. B.
Schlegel
, “
Accurate reaction paths using a Hessian based predictor–corrector integrator
,”
J. Chem. Phys.
120
,
9918
9924
(
2004
).
57.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
, “
A simple and efficient CCSD (T)-F12 approximation
,”
J. Chem. Phys.
127
,
221106
(
2007
).
58.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
, “
Simplified CCSD (T)-F12 methods: Theory and benchmarks
,”
J. Chem. Phys.
130
,
054104
(
2009
).
59.
K. A.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
, “
Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar
,”
J. Chem. Phys.
128
,
084102
(
2008
).
60.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
61.
C.
Arasa
,
S.
Andersson
,
H.
Cuppen
,
E. F.
van Dishoeck
, and
G.-J.
Kroes
, “
Molecular dynamics simulations of the ice temperature dependence of water ice photodesorption
,”
J. Chem. Phys.
132
,
184510
(
2010
).
62.
A.
Fredon
,
T.
Lamberts
, and
H.
Cuppen
, “
Energy dissipation and nonthermal diffusion on interstellar ice grains
,”
Astrophys. J.
849
,
125
(
2017
).
63.
D.
Talbi
,
G.
Chandler
, and
A.
Rohl
, “
The interstellar gas-phase formation of CO2—Assisted or not by water molecules?
,”
Chem. Phys.
320
,
214
228
(
2006
).
64.
K. I.
Öberg
,
A.
Boogert
,
K. M.
Pontoppidan
,
G. A.
Blake
,
N. J.
Evans
,
F.
Lahuis
, and
E. F.
van Dishoeck
, “
The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. III. CH4
,”
Astrophys. J.
678
,
1032
1041
(
2008
).
65.
A.
Bieler
,
K.
Altwegg
,
H.
Balsiger
,
A.
Bar-Nun
,
J.-J.
Berthelier
,
P.
Bochsler
,
C.
Briois
,
U.
Calmonte
,
M.
Combi
,
J.
De Keyser
 et al, “
Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko
,”
Nature
526
,
678
(
2015
).
66.
V.
Taquet
,
K.
Furuya
,
C.
Walsh
, and
E. F.
van Dishoeck
, “
A primordial origin for molecular oxygen in comets: A chemical kinetics study of the formation and survival of O2 ice from clouds to discs
,”
Mon. Not. R. Astron. Soc.
462
,
S99
S115
(
2016
).
67.
D.
Qasim
,
G.
Fedoseev
,
K.-J.
Chuang
,
V.
Taquet
,
T.
Lamberts
,
J.
He
,
S.
Ioppolo
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
Formation of interstellar propanal and 1-propanol ice: A pathway involving solid-state CO hydrogenation
,”
Astron. Astrophys.
627
,
A1
(
2019
).
68.
J. R.
Martínez-Galarza
 et al,
Mid-Infrared Spectroscopy of Starbursts: From Spitzer-IRS to JWST-MIRI
(
Leiden Observatory, Faculty of Science, Leiden University
,
2012
).
69.
J. T.
van Scheltinga
,
N.
Ligterink
,
A.
Boogert
,
E. F.
van Dishoeck
, and
H.
Linnartz
, “
Infrared spectra of complex organic molecules in astronomically relevant ice matrices-I. Acetaldehyde, ethanol, and dimethyl ether
,”
Astron. Astrophys.
611
,
A35
(
2018
).
You do not currently have access to this content.