This paper presents the design of a wireless portable and multichannel potentiostat for remote monitoring in enclosed environments for long-time applications. In this paper, the proposed potentiostat is tested for monitoring the glucose concentration during the fermentation of yeast in real time for more than 24 h. The potentiostat is powered by a USB-connected battery and operated through a Bluetooth using a LabVIEW designed data monitoring and control panel. The potentiostat is capable of performing cyclic voltammetry or chronoamperometry on six biosensors simultaneously and gives the real-time response using Bluetooth connection. The potentiostat has a common counter electrode and reference electrode connection to all biosensors and independent working electrodes for all biosensors. The potentiostat was tested and validated by comparing the results obtained by a commercial potentiostat. The tests performed for monitoring the glucose concentration during the fermentation process showed a current detection limit of 180 nA and reported a standard deviation of ±2% for anodic and cathodic current peaks for cyclic voltammetry measurements when compared with the commercially available device. This study enables the novel method of monitoring the fermentation process wirelessly for days.

1.
M.
Famulok
, “
Bringing picomolar protein detection into proximity
,”
Nat. Biotechnol.
20
(
5
),
448
449
(
2002
).
2.
C.
Loncaric
,
Y.
Tang
,
C.
Ho
,
M. A.
Parameswaran
, and
H.-Z.
Yu
, “
A USB-based electrochemical biosensor prototype for point-of-care diagnosis
,”
Sens. Actuators, B
161
(
1
),
908
913
(
2012
).
3.
P.
Giménez-Gómez
,
M.
Gutiérrez-Capitán
,
F.
Capdevila
,
A.
Puig-Pujol
,
C.
Fernández-Sánchez
, and
C.
Jiménez-Jorquera
, “
Monitoring of malolactic fermentation in wine using an electrochemical bienzymatic biosensor for L-lactate with long term stability
,”
Anal. Chim. Acta
905
,
126
133
(
2016
).
4.
S.
Piermarini
,
G.
Volpe
,
M.
Esti
,
M.
Simonetti
, and
G.
Palleschi
, “
Real time monitoring of alcoholic fermentation with low-cost amperometric biosensors
,”
Food Chem.
127
(
2
),
749
754
(
2011
).
5.
A.
Hickling
, “
A simple potentiostat for general laboratory use
,”
Electrochim. Acta
5
(
3
),
161
168
(
1961
).
6.
T.
Fang
,
M.
McGrath
,
D.
Diamond
, and
M. R.
Smyth
, “
Development of a computer controlled multichannel potentiostat for applications with flowing solution analysis
,”
Anal. Chim. Acta
305
(
1-3
),
347
358
(
1995
).
7.
Y.
Liu
,
A.
Gore
,
S.
Chakrabartty
, and
E.
Alocilja
, “
A molecular bio-wire based multi-array biosensor with integrated potentiostat
,” in
IEEE Biomedical Circuits and Systems Conference Healthcare Technology, BiOCAS2007
(
IEEE
,
2007
), pp.
29
32
.
8.
I.
Ramfos
 et al, “
A compact hybrid-multiplexed potentiostat for real-time electrochemical biosensing applications
,”
Biosens. Bioelectron.
47
,
482
489
(
2013
).
9.
M.
Naware
,
A.
Rege
,
R.
Genov
,
M.
Stanacevic
,
G.
Cauwenberghs
, and
N.
Thakor
, “
Integrated multi-electrode fluidic nitric-oxide sensor and VLSI potentiostat array
,” in
2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)
(
IEEE
,
2004
), Vol. 4.
10.
R.
Hintsche
,
J.
Albers
,
H.
Bernt
, and
A.
Eder
, “
Multiplexing of microelectrode arrays in voltammetric measurements
,”
Electroanalysis
12
(
9
),
660
665
(
2000
).
11.
T.-C.
Tang
,
A.
Deng
, and
H.-J.
Huang
, “
Immunoassay with a microtiter plate incorporated multichannel electrochemical detection system
,”
Anal. Chem.
74
(
11
),
2617
2621
(
2002
).
12.
R. S.
Freire
,
M. M. C.
Ferreira
,
N.
Durán
, and
L. T.
Kubota
, “
Dual amperometric biosensor device for analysis of binary mixtures of phenols by multivariate calibration using partial least squares
,”
Anal. Chim. Acta
485
(
2
),
263
269
(
2003
).
13.
M.
Vergani
 et al, “
Compact potentiostat for cellular electrochemical imaging with 54 parallel channels
,” in
2012 IEEE Biomedical Circuits and Systems Conference: Intelligent Biomedical Electronics and Systems for Better Life and Better Environment, BioCAS 2012-Conference Publications
(
IEEE
,
2012
), pp.
136
139
.
14.
K.-S.
Sohn
 et al, “
A unified potentiostat for electrochemical glucose sensors
,”
Trans. Electr. Electron. Mater.
14
(
5
),
273
277
(
2013
).
15.
E.
Salman
,
M. H.
Asgari
, and
M.
Stanaćević
, “
Signal integrity analysis of a 2-D and 3-D integrated potentiostat for neurotransmitter sensing
,” in
2011 IEEE Biomedical Circuits and Systems Conference (BioCAS)
(
IEEE
,
2011
), pp.
17
20
.
16.
D.
Quinton
 et al, “
On-chip multi-electrochemical sensor array platform for simultaneous screening of nitric oxide and peroxynitrite
,”
Lab Chip
11
(
7
),
1342
1350
(
2011
).
17.
M.
Mollazadeh
,
K.
Murari
,
C.
Sauer
,
M.
Stanacevic
,
N.
Thakor
, and
G.
Cauwenberghs
, “
Wireless integrated voltametric and amperometric biosensing
,” in
2006 IEEE/NLM Life Science Systems and Applications Workshop, LiSA
(
IEEE
,
2006
).
18.
A.
Bandyopadhyay
,
G.
Mulliken
,
G.
Cauwenberghs
, and
N.
Thakor
, “
VLSI potentiostat array for distributed electrochemical neural recording
,” in
2002 IEEE International Symposium on Circuits and Systems
(
IEEE
,
2002
), Vol. 2, pp.
740
743
.
19.
K.
Murari
,
N.
Thakor
,
M.
Stanacevic
, and
G.
Cauwenberghs
, “
Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing
,” in
IEEE Engineering in Medicine and Biology Society Conference
(
IEEE
,
2004
), Vol. 6, pp.
4063
4066
.
20.
M.
Stanacevic
,
K.
Murari
,
A.
Rege
,
G.
Cauwenberghs
, and
N. V.
Thakor
, “
VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing
,”
IEEE Trans. Biomed. Circuits Syst.
1
(
1
),
63
72
(
2007
).
21.
K.
Murari
,
C.
Sauer
,
M.
Stanacevic
,
G.
Cauwenberghs
, and
N.
Thakor
, “
Wireless multichannel integrated potentiostat for distributed neurotransmitter sensing
,” in
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
IEEE
,
2005
), Vol. 7, pp.
7329
7332
.
22.
K.
Murari
,
M.
Stanaćević
,
G.
Cauwenberghs
, and
N. V.
Thakor
, “
Integrated potentiostat for neurotransmitter sensing: A high sensitivity, wide range VLSI design and chip
,”
IEEE Eng. Med. Biol. Mag.
24
(
6
),
23
29
(
2004
).
23.
R.
Genov
,
M.
Stanacevic
,
M.
Naware
,
G.
Cauwenberghs
, and
N. V.
Thakor
, “
16-channel integrated potentiostat for distributed neurochemical sensing
,”
IEEE Trans. Circuits Syst. I
53
(
11
),
2371
2376
(
2006
).
24.
M.
Stanacevic
,
M.
Naware
,
G.
Cauwenberghs
, and
N.
Thakor
, “
VLSI multichannel track-and-hold potentiostat
,”
Proc. SPIE
5119
,
117
128
(
2003
).
25.
A.
Muid
,
M.
Djamal
, and
R.
Wirawan
, “
Development of a low cost potentiostat using ATXMEGA32
,”
AIP Conf. Proc.
1589
,
124
128
(
2014
).
26.
T.
Dobbelaere
,
P. M.
Vereecken
, and
C.
Detavernier
, “
A USB-controlled potentiostat/galvanostat for thin-film battery characterization
,”
HardwareX
2
,
34
49
(
2017
).
27.
P.
Wu
,
G.
Vazquez
,
N.
Mikstas
,
S.
Krishnan
, and
U.
Kim
, “
Aquasift: A low-cost, hand-held potentiostat for point-of-use electrochemical detection of contaminants in drinking water
,” in
GHTC 2017-IEEE Global Humanitarian Technology Conference
(
IEEE
,
2017
), Vol. 2017, pp.
1
4
.
28.
C.-Y.
Huang
,
Y.-C.
Wang
,
H.-C.
Chen
, and
K.-C.
Ho
, “
Design of a portable potentiostat for electrochemical sensors
,” in
Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference
(
IEEE
,
2004
), pp.
331
336
.
29.
M. D.
Steinberg
,
P.
Kassal
,
I.
Kereković
, and
I. M.
Steinberg
, “
A wireless potentiostat for mobile chemical sensing and biosensing
,”
Talanta
143
,
178
183
(
2015
).
30.
S. D.
Adams
,
E. H.
Doeven
,
K.
Quayle
, and
A. Z.
Kouzani
, “
MiniStat: Development and evaluation of a mini-potentiostat for electrochemical measurements
,”
IEEE Access
7
,
31903
31912
(
2019
).
31.
P. S.
Joshi
and
D. S.
Sutrave
, “
Building an arduino based potentiostat and instrumentation for cyclic voltammetry
,”
J. Appl. Sci. Comput.
5
(
12
),
163
167
(
2018
).
32.
Y. C.
Li
 et al, “
An easily fabricated low-cost potentiostat coupled with user-friendly software for introducing students to electrochemical reactions and electroanalytical techniques
,”
J. Chem. Educ.
95
,
1658
1661
(
2018
).
33.
C.-Y.
Huang
, “
Design and implementation of potentiostat with standalone signal generator for vanillylmandelic acid biosensors
,”
Sensors Mater.
29
(
6
),
619
628
(
2017
).
34.
J.
Punter-Villagrasa
 et al, “
A low-power electronic instrumentation for multi-parametric diabetes mellitus analysis
,” in
42nd Annual Conference of the IEEE Industrial Electronics Society
(
IEEE
,
2016
), pp.
5211
5215
.
35.
R.
Kumar
,
J.
Sharma
, and
R.
Singh
, “
Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves
,”
Microbiol. Res.
162
(
4
),
384
390
(
2007
).
36.
Wine Chemistry and Biochemistry
, edited by
M. V.
Moreno-Arribas
and
M. C.
Polo
(
Springer
,
New York, NY
,
2009
).
37.
F.
Badotti
 et al, “
Switching the mode of sucrose utilization by Saccharomyces cerevisiae
,”
Microb. Cell Fact.
7
(
1
),
4
(
2008
).
38.
M.
Florescu
and
C. M. A.
brett
, “
Development and evaluation of electrochemical glucose enzyme biosensors based on carbon film electrodes
,”
Talanta
65
,
306
312
(
2005
).
39.
M.
Esti
,
V.
Giulia
,
D.
Compagnone
,
G.
Mariotti
,
D.
Moscone
, and
G.
Palleschi
, “
Monitoring alcoholic fermentation of red wine by electrochemical biosensors
,”
Am. J. Enol. Vitic.
54
(
1
),
39
45
(
2003
).
40.
J.
Zosel
,
W.
Oelßner
,
M.
Decker
,
G.
Gerlach
, and
U.
Guth
, “
The measurement of dissolved and gaseous carbon dioxide concentration
,”
Meas. Sci. Technol.
22
(
7
),
072001
(
2011
).
41.
F.
Jimenez
,
J.
Vazquez
,
J. L.
Sanchez-Rojas
,
N.
Barrajon
, and
J.
Ubeda
, “
Multi-purpose optoelectronic instrument for monitoring the alcoholic fermentation of wine
,” in
2011 IEEE Sensors Proceedings
(
IEEE
,
2011
), pp.
390
393
.
42.
E. M.
Avdikos
,
M. I.
Prodromidis
, and
C. E.
Efstathiou
, “
Construction and analytical applications of a palm-sized microcontroller-based amperometric analyzer
,”
Sens. Actuators, B
107
(
1
),
372
378
(
2005
).
43.
J. R.
Blanco
 et al, “
Design of a low-cost portable potentiostat for amperometric biosensors
,” in
IEEE Instrumentation and Measurement Technology Conference
(
IEEE
,
2006
), pp.
690
694
.
44.
D.
Desmond
,
B.
Lane
,
J. C.
Alderman
,
M.
Hill
,
D. W. M.
Arrigan
, and
J. D.
Glennon
, “
An environmental monitoring system for trace metals using stripping voltammetry
,”
Sens. Actuators, B
48
(
1-3
),
409
414
(
1998
).
45.
M. D.
Steinberg
, “
A micropower amperometric potentiostat
,”
Sens. Actuators, B
97
(
2-3
),
284
289
(
2004
).
46.
A.
Economou
,
S. D.
Bolis
,
C. E.
Efstathiou
, and
G. J.
Volikakis
, “
A “virtual” electroanalytical instrument for square wave voltammetry
,”
Anal. Chim. Acta
467
(
1-2
),
179
188
(
2002
).
47.
I.
Acevedo-Restrepo
,
L.
Blandón-Naranjo
,
J.
Hoyos-Arbeláez
,
F.
Della Pelle
, and
M.
Vázquez
, “
Electrochemical glucose quantification as a strategy for ethanolic fermentation monitoring
,”
Chemosensors
7
(
1
),
14
(
2019
).
48.
A.
Soley
 et al, “
On-line monitoring of yeast cell growth by impedance spectroscopy
,”
J. Biotechnol.
118
(
4
),
398
405
(
2005
).
49.
M. A.
Pérez
 et al, “
Impedance spectrometry for monitoring alcoholic fermentation kinetics under wine-making industrial conditions
,” in
XIX IMEKO World Congress Fundamental and Applied Metrology, September 6-11, 2009, Lisbon, Portugal
(
IMEKO
,
2009
), Vol. 4, pp.
2508
2512
.
50.
M. L.
Zamora
,
G. A.
Ruiz
, and
C. J.
Felice
, “
Evaluation of sugar yeast consumption by measuring electrical medium resistance
,”
J. Electr. Bioimpedance
4
(
1
),
51
56
(
2013
).
51.
L. W.
Bergman
, “
Growth and maintenance of yeast
,” in
Two-Hybrid Systems
(
Humana Press
,
New Jersey
,
2001
), pp.
009
014
.
52.
A. B.
Islam
 et al, “
A potentiostat circuit for multiple implantable electrochemical sensors
,” in
ICECE 2010-6th International Conference on Electrical and Computer Engineering
(
IEEE
,
2010
), pp.
314
317
.
53.
S.
Abdullah
,
S.
Tonello
,
M.
Borghetti
,
E.
Sardini
, and
M.
Serpelloni
, “
Potentiostats for protein biosensing: Design considerations and analysis on measurement characteristics
,”
J. Sensors
2019
,
1
20
.
54.
J.
Wang
,
Analytical Electrochemistry
(
Wiley-VCH
,
2006
).
55.
E.-H.
Yoo
and
S.-Y.
Lee
, “
Glucose biosensors: An overview of use in clinical practice
,”
Sensors
10
(
5
),
4558
4576
(
2010
).
56.
M.
Artigues
,
J.
Abellà
, and
S.
Colominas
, “
Analytical parameters of an amperometric glucose biosensor for fast analysis in food samples
,”
Sensors
17
(
11
),
2620
(
2017
).
57.
P.
Krzyczmonik
,
E.
Socha
, and
S.
Skrzypek
, “
Electrochemical detection of glucose in beverage samples using Poly(3,4-ethylenedioxythiophene)-modified electrodes with immobilized glucose oxidase
,”
Electrocatalysis
9
(
3
),
380
387
(
2018
).
You do not currently have access to this content.