Cryogenic helium-4 has extremely small kinetic viscosity, which makes it a promising material for high Reynolds (Re) number turbulence research in compact laboratory apparatus. In its superfluid phase (He II), helium has an extraordinary heat transfer capability and has been utilized in various scientific and engineering applications. In order to unlock the full potential of helium in turbulence research and to improve our understanding of the heat transfer mechanism in He II, a flow facility that allows quantitative study of helium heat-and-mass transfer processes is needed. Here, we report our work in assembling and testing a unique helium pipe-flow facility that incorporates a novel double-line molecular tagging velocimetry (DL-MTV) system. This flow facility allows us to generate turbulent pipe flows with Re above 107, and it can also be adapted to produce heat-induced counterflow in He II. The DL-MTV system, which is based on the generation and tracking of two parallel thin He2* molecular tracer lines with an adjustable separation distance, allows us to measure not only the velocity profile but also both the transverse and longitudinal spatial velocity structure functions. We have also installed a differential pressure sensor on the flow pipe for pressure drop measurements. The testing results of the flow facility and the measuring instruments are presented. We discuss how this facility will allow us to solve some outstanding problems in the helium heat-and-mass transfer topic area.

1.
K. R.
Sreenivasan
and
R. J.
Donnelly
, “
Role of cryogenic helium in classical fluid dynamics: Basic research and model testing
,”
Adv. Appl. Mech.
37
,
239
(
2001
).
2.
J.
Donnelly
and
C. F.
Barenghi
, “
The observed properties of liquid helium at the saturated vapor pressure
,”
J. Phys. Chem. Ref. Data
27
,
1217
(
1998
).
3.
M. V.
Zagarola
and
A. J.
Smits
, “
Scaling of the mean velocity profile for turbulent pipe flow
,”
Phys. Rev. Lett.
78
,
239
242
(
1997
).
4.
W.
Guo
,
D. P.
Lathrop
,
M.
La Mantia
, and
S. W.
Van Sciver
, “
Visualization of two-fluid flows of superfluid helium-4 at finite temperatures
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
4653
(
2014
).
5.
J.
Gao
,
A.
Marakov
,
W.
Guo
,
B. T.
Pawlowski
,
S. W.
Van Sciver
,
G. G.
Ihas
,
D. N.
McKinsey
, and
W. F.
Vinen
, “
Producing and imaging a thin line of He2* tracer molecules in helium-4
,”
Rev. Sci. Instrum.
86
,
093904
(
2015
).
6.
A.
Marakov
,
J.
Gao
,
W.
Guo
,
S. W.
Van Sciver
,
G. G.
Ihas
,
D. N.
McKinsey
, and
W. F.
Vinen
, “
Visualization of the normal-fluid turbulence in counterflowing superfluid 4He
,”
Phys. Rev. B
91
,
094503
(
2015
).
7.
J.
Gao
,
W.
Guo
, and
W. F.
Vinen
, “
Determination of the effective kinematic viscosity for the decay of quasiclassical turbulence in superfluid 4He
,”
Phys. Rev. B
94
,
094502
(
2016
).
8.
J.
Gao
,
W.
Guo
,
V. S.
L’vov
,
A.
Pomyalov
,
L.
Skrbek
,
E.
Varga
, and
W. F.
Vinen
, “
Challenging problem in quantum turbulence: Decay of counterflow in superfluid 4He
,”
JETP Lett.
103
,
648
(
2016
).
9.
J.
Gao
,
E.
Varga
,
W.
Guo
, and
W. F.
Vinen
, “
Energy spectrum of thermal counterflow turbulence in superfluid helium-4
,”
Phys. Rev. B
96
,
094511
(
2017
).
10.
E.
Varga
,
J.
Gao
,
W.
Guo
, and
L.
Skrbek
, “
Intermittency enhancement in quantum turbulence in superfluid 4He
,”
Phys. Rev. Fluids
3
,
094601
(
2018
).
11.
J.
Gao
,
W.
Guo
,
W. F.
Vinen
,
S.
Yui
, and
M.
Tsubota
, “
Dissipation in quantum turbulence in superfluid 4He
,”
Phys. Rev. B
97
,
184518
(
2018
).
12.
S.
Bao
,
W.
Guo
,
V. S.
L’vov
, and
A.
Pomyalov
, “
Statistics of turbulence and intermittency enhancement in superfluid 4He counterflow
,”
Phys. Rev. B
98
,
174509
(
2018
).
13.
D. R.
Tilley
and
J.
Tilley
,
Superfluidity and Superconductivity
, 2nd ed. (
A. Hilger; University of Sussex Press
,
Boston
,
1986
).
14.
R. J.
Donnelly
,
Quantized Vortices in Helium II
(
Cambridge University Press
,
Cambridge, England; New York
,
1991
).
15.
W. F.
Vinen
and
J. J.
Niemela
, “
Quantum turbulence
,”
J. Low Temp. Phys.
129
,
213
(
2002
).
16.
W. F.
Vinen
, “
Mutual friction in a heat current in liquid helium II. I. Experiments on steady heat currents
,”
Proc. R. Soc. London Ser. A
240
,
114
127
(
1957
).
17.
T.
Xu
and
S. W.
Van Sciver
, “
Particle image velocimetry measurements of the velocity profile in He II forced flow
,”
Phys. Fluids
19
,
071703
(
2007
).
18.
T. V.
Chagovets
and
S. W.
Van Sciver
, “
Visualization of He II forced flow around a cylinder
,”
Phys. Fluids
27
,
045111
(
2015
).
19.
W.
Guo
,
D. N.
McKinsey
,
A.
Marakov
,
K. J.
Thompson
,
G. G.
Ihas
, and
W. F.
Vinen
, “
Visualization technique for determining the structure functions of normal-fluid turbulence in superfluid helium-4
,”
J. Low Temp. Phys.
171
,
497
(
2013
).
20.
W. S.
Dennis
,
E.
Durbin
,
W.
Fitzsimm
,
O.
Heybey
, and
G. K.
Walters
, “
Spectroscopic identification of excited atomic and molecular states in electron-bombarded liquid helium
,”
Phys. Rev. Lett.
23
,
1083
(
1969
).
21.
J. C.
Hill
,
O.
Heybey
, and
G. K.
Walters
, “
Evidence of metastable atomic and molecular bubble states in electron-bombarded superfluid liquid helium
,”
Phys. Rev. Lett.
26
,
1213
(
1971
).
22.
A. V.
Benderskii
,
J.
Eloranta
,
R.
Zadoyan
, and
V. A.
Apkarian
, “
A direct interrogation of superfluidity on molecular scales
,”
J. Chem. Phys.
117
,
1201
1213
(
2002
).
23.
D. N.
McKinsey
,
C. R.
Brome
,
J. S.
Butterworth
,
S. N.
Dzhosyuk
,
P. R.
Huffman
,
C. E. H.
Mattoni
,
J. M.
Doyle
,
R.
Golub
, and
K.
Habicht
, “
Radiative decay of the metastable He2(a3Σu+) molecule in liquid helium
,”
Phys. Rev. A
59
,
200
204
(
1999
).
24.
W.
Guo
and
A. I.
Golov
, “
Shape fluctuations and optical transition of He2* excimer tracers in superfluid 4He
,”
Phys. Rev. B
101
,
064515
(
2020
).
25.
D. E.
Zmeev
,
F.
Pakpour
,
P. M.
Walmsley
,
A. I.
Golov
,
W.
Guo
,
D. N.
McKinsey
,
G. G.
Ihas
,
P. V. E.
McClintock
,
S. N.
Fisher
, and
W. F.
Vinen
, “
Excimers He2* as tracers of quantum turbulence in 4He in the T = 0 limit
,”
Phys. Rev. Lett.
110
,
175303
(
2013
).
26.
D. E.
Zmeev
,
F.
Pakpour
,
P. M.
Walmsley
,
A. I.
Golov
,
P. V. E.
McClintock
,
S. N.
Fisher
,
W.
Guo
,
D. N.
McKinsey
,
G. G.
Ihas
, and
W. F.
Vinen
, “
Observation of crossover from ballistic to diffusion regime for excimer molecules in superfluid 4He
,”
J. Low Temp. Phys.
171
,
207
(
2013
).
27.
W.
Guo
, “
Molecular tagging velocimetry in superfluid helium-4: Progress, issues, and future development
,”
J. Low Temp. Phys.
196
,
60
72
(
2019
).
28.
S. A.
Self
, “
Focusing of spherical Gaussian beams
,”
Appl. Opt.
22
,
658
661
(
1983
).
29.
W.
Guo
,
J. D.
Wright
,
S. B.
Cahn
,
J. A.
Nikkel
, and
D. N.
McKinsey
, “
Metastable helium molecules as tracers in superfluid 4He
,”
Phys. Rev. Lett.
102
,
235301
(
2009
).
30.
W.
Guo
,
J. D.
Wright
,
S. B.
Cahn
,
J. A.
Nikkel
, and
D. N.
McKinsey
, “
Studying the normal-fluid flow in helium-II using metastable helium molecules
,”
J. Low Temp. Phys.
158
,
346
352
(
2010
).
31.
W.
Guo
,
S. B.
Cahn
,
J. A.
Nikkel
,
W. F.
Vinen
, and
D. N.
McKinsey
, “
Visualization study of counterflow in superfluid 4He using metastable helium molecules
,”
Phys. Rev. Lett.
105
,
045301
(
2010
).
32.
R. B.
Miles
and
W. R.
Lempert
, “
Quantitative flow visualization in unseeded flows
,”
Annu. Rev. Fluid Mech.
29
,
285
(
1997
).
33.
P. A.
Davidson
,
Turbulence: An Introduction for Scientists and Engineers
(
Oxford University Press
,
United Kingdom
,
2004
).
34.
B.
Dhruva
,
Y.
Tsuji
, and
K. R.
Sreenivasan
, “
Transverse structure functions in high-Reynolds-number turbulence
,”
Phys. Rev. E
56
,
R4928
(
1997
).
35.
S.
Grossmann
,
D.
Lohse
, and
A.
Reeh
, “
Different intermittency for longitudinal and transversal turbulent fluctuations
,”
Phys. Fluids
9
,
3817
(
1997
).
36.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
, 2nd ed. (
Pergamon Press
,
Oxford, England; New York
,
1987
).
37.
M. V.
Zagarola
and
A. J.
Smits
, “
Mean-flow scaling of turbulent pipe flow
,”
J. Fluid Mech.
373
,
33
(
1998
).
38.
A. J.
Smits
,
B. J.
McKeon
, and
I.
Marusic
, “
High-Reynolds number wall turbulence
,”
Annu. Rev. Fluid Mech.
43
,
353
(
2011
).
39.
I.
Marusic
,
B. J.
McKeon
,
P. A.
Monkewitz
,
H. M.
Nagib
,
A. J.
Smits
, and
K. R.
Sreenivasan
, “
Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues
,”
Phys. Fluids
22
,
065103
(
2010
).
40.
J.
McKeon
and
K. R.
Sreenivasan
, “
Introduction: Scaling and structure in high Reynolds number wall-bounded flows
,”
Philos. Trans. R. Soc., A
365
,
635
(
2007
).
41.
M.
Hultmark
,
M.
Vallikivi
,
S. C. C.
Bailey
, and
A. J.
Smits
, “
Turbulent pipe flow at extreme Reynolds numbers
,”
Phys. Rev. Lett.
108
,
094501
(
2012
).
42.
N.
Furuichi
,
Y.
Terao
,
Y.
Wada
, and
Y.
Tsuji
, “
Friction factor and mean velocity profile for pipe flow at high Reynolds numbers
,”
Phys. Fluids
27
,
095108
(
2015
).
43.
S.
Fuzier
,
B.
Baudouy
, and
S. W.
Van Sciver
, “
Steady-state pressure drop and heat transfer in He II forced flow at high Reynolds number
,”
Cryogenics
41
,
453
459
(
2001
).
44.
C. F.
Barenghi
,
D. C.
Samuels
,
G. H.
Bauer
, and
R. J.
Donnelly
, “
Superfluid vortex lines in a model of turbulent flow
,”
Phys. Fluids
9
,
2631
(
1997
).
45.
A. W.
Baggaley
,
C. F.
Barenghi
,
A.
Shukurov
, and
Y. A.
Sergeev
, “
Coherent vortex structures in quantum turbulence
,”
Europhys. Lett.
98
,
26002
(
2012
).
46.
G. W.
Stagg
,
N. G.
Parker
, and
C. F.
Barenghi
, “
Superfluid boundary layer
,”
Phys. Rev. Lett.
118
,
135301
(
2017
).
47.
S. W.
Van Sciver
,
Helium Cryogenics
(
Springer
,
Boston, MA, USA
,
2012
).
48.
K. W.
Schwarz
, “
Theory of turbulence in superfluid He-4
,”
Phys. Rev. Lett.
38
,
551
554
(
1977
).
49.
C. F.
Barenghi
,
R. J.
Donnelly
, and
W. F.
Vinen
,
Quantized Vortex Dynamics and Superfluid Turbulence
(
Springer Berlin Heidelberg
,
Germany
,
2008
).
50.
L.
Biferale
,
D.
Khomenko
,
V.
L’vov
,
A.
Pomyalov
,
I.
Procaccia
, and
G.
Sahoo
, “
Superfluid helium in three-dimensional counterflow differs strongly from classical flows: Anisotropy on small scales
,”
Phys. Rev. Lett.
122
,
144501
(
2019
).
You do not currently have access to this content.