Photonic Doppler Velocimetry (PDV) is a fiber-based diagnostic for the extreme conditions created by high-speed impact, explosive detonation, electrical pulsed power, and intense laser ablation. PDV is a conceptually simple application of the optical Doppler effect, but measurements above 1 km/s only became practical at the beginning of the twenty-first century. This review discusses the evolution of PDV, its operational details, practical analysis, and outstanding challenges.

1.
G. E.
Duvall
and
R. A.
Graham
, “
Phase transitions under shock wave loading
,”
Rev. Mod. Phys.
49
,
523
(
1977
).
2.
LASL Shock Hugoniot Data
, edited by
S.
Marsh
(
University of California Press
,
Berkeley
,
1980
).
3.
D.
Bancroft
,
E. L.
Peterson
, and
S.
Minshall
, “
Polymorphism of iron at high pressure
,”
J. Appl. Phys.
27
,
291
(
1956
).
4.
L. M.
Barker
and
R. E.
Hollenbach
, “
Shock wave study of the α ⇄ ϵ phase transition in iron
,”
J. Appl. Phys.
45
,
4872
(
1974
).
5.
B. J.
Jensen
,
G. T.
Gray
, and
R. S.
Hixson
, “
Direct measurements of the α-ϵ transition stress and kinetics for shocked iron
,”
J. Appl. Phys.
105
,
103502
(
2009
).
6.
L. M.
Barker
and
R. E.
Hollenbach
, “
Laser interferometer for measuring high velocities of any reflecting surface
,”
J. Appl. Phys.
43
,
4669
(
1972
).
7.
C. F.
McMillan
,
D. R.
Goosman
,
N. L.
Parker
,
L. L.
Steinmetz
,
H. H.
Chau
,
T.
Huen
,
R. K.
Whipkey
, and
S. J.
Perry
, “
Velocimetry of fast surfaces using Fabry–Perot interferometry
,”
Rev. Sci. Instrum.
59
,
1
(
1988
).
8.
O.
Strand
,
L.
Berzins
,
D.
Goosman
,
W.
Kuhlow
,
P.
Sargis
, and
T.
Whitworth
, “
Velocimetry using heterodyne techniques
,” in
Proceedings of the 26th International Congress on High-Speed Photography and Photonics
, edited by
D.
Paisley
(
SPIE
,
Alexandria, VA
,
2004
), Vol. 5580, p.
593
.
9.
See https://kb.osu.edu/handle/1811/52627 for Photonic Doppler Velocimetry (PDV) users workshop archive (accessed December 2019).
10.
M.
Born
and
E.
Wolf
,
Principles of Optics
, 7th ed. (
Cambridge University Press
,
Cambridge
,
1999
).
11.
L. M.
Barker
, “
Laser interferometry in shock-wave research
,”
Exp. Mech.
12
,
209
(
1972
).
12.
G. D.
Stevens
,
S. S.
Lutz
,
B. R.
Marshall
,
W. D.
Turley
,
L. R.
Veeser
,
M. R.
Furlanetto
,
R. S.
Hixson
,
D. B.
Holtkamp
,
B. J.
Jensen
,
P. A.
Rigg
, and
M. D.
Wilke
, “
Free-surface optical scattering as an indicator of the shock-induced solid-liquid phase transition in tin
,”
J. Appl. Phys.
104
,
013525
(
2008
).
13.
S.
Grant
and
T.
Ao
, “
The effects of surface roughness on specular diagnostics in shocked experiments
,”
Rev. Sci. Instrum.
90
,
096105
(
2019
).
14.
G.
Agrawal
,
Fiber-Optic Communication Systems
, 4th ed. (
Wiley
,
2010
).
15.
B. J.
Jensen
,
D. B.
Holtkamp
,
P. A.
Rigg
, and
D. H.
Dolan
, “
Accuracy limits and window corrections for photon Doppler velocimetry
,”
J. Appl. Phys.
101
,
013523
(
2007
).
16.
N. R.
Routley
,
E.
Price
,
P. T.
Keightley
,
J. C. F.
Millett
,
N. K.
Bourne
,
E. N.
Brown
, and
G. T.
Gray
, “
An investigation of surface velocimetry of shocked polyethylene using HetV
,”
AIP Conf. Proc.
955
,
1131
(
2007
).
17.
P.
Mercier
,
J.
Benier
,
P.
Frugier
,
G.
Contencin
,
J.
Veaux
,
S.
Lauriot-Basseuil
, and
M.
Debruyne
, “
Heterodyne velocimetry and detonics experiments
,” in
Proceedings of the 28th International Congress on High-Speed Imaging and Photonics
, edited by
H.
Kleine
(
SPIE
,
2008
), Vol. 7126, p.
10
.
18.
J.
Weng
,
H.
Tan
,
X.
Wang
,
Y.
Ma
,
S.
Hu
, and
X.
Wang
, “
Optical-fiber interferometer for velocity measurments with picosecond resolution
,”
Appl. Phys. Lett.
89
,
111101
(
2006
).
19.
J.
Weng
,
X.
Wang
,
Y.
Ma
,
H.
Tan
,
L.
Cai
,
J.
Li
, and
C.
Liu
, “
A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser
,”
Rev. Sci. Instrum.
79
,
113101
(
2008
).
20.
B.
Jia
,
L.
Hu
,
H.
Tan
,
X.
Zhou
, and
K.
Ye
, “
Fiber-optic interferometer for measuring low velocity of diffusely reflecting surface
,”
Microwave Opt. Technol. Lett.
22
,
231
(
1999
).
21.
J.
Weng
,
H.
Tan
,
S.
Hu
,
Y.
Ma
, and
X.
Wang
, “
New all-fiber velocimeter
,”
Rev. Sci. Instrum.
76
,
093301
(
2005
).
22.
K. G.
Krauter
,
G. F.
Jacobson
,
J. R.
Patterson
,
J. H.
Nguyen
, and
W. P.
Ambrose
, “
Single-mode fiber velocity interferometry
,”
Rev. Sci. Instrum.
82
,
045110
(
2011
).
23.
B. L.
Lone
,
B.
Marshall
,
E. K.
Miller
,
G.
Stevens
,
W.
Turley
, and
L. R.
Veeser
, “
Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments
,”
Rev. Sci. Instrum.
86
,
023112
(
2015
).
24.
M. E.
Fajardo
,
C. D.
Molek
, and
A. L.
Vesely
, “
Coherent optical transients observed in rubidium atomic line filtered Doppler velocimetry experiments
,”
J. Appl. Phys.
118
,
144901
(
2015
).
25.
O.
Strand
,
Handbook For the Photonic Doppler Velocimeter Nevada National Security Site
(
Las Vegas
,
NV
,
2017
).
26.
O. T.
Strand
,
D. R.
Goosman
,
C.
Martinez
,
T. L.
Whitworth
, and
W. W.
Kuhlow
, “
Compact system for high-speed velocimetry using heterodyne techniques
,”
Rev. Sci. Instrum.
77
,
083108
(
2006
).
27.
D. H.
Dolan
,
K.
Bell
,
B.
Fox
,
S. C.
Jones
,
P.
Knapp
,
M. R.
Gomez
,
M.
Martin
,
A.
Porwitzky
, and
G.
Laity
, “
Plasma and radiation detection via fiber interferometry
,”
J. Appl. Phys.
123
,
034502
(
2018
).
28.
C. H.
Gallegos
,
B.
Marshall
,
M.
Teel
,
V. T.
Romero
,
A.
Diaz
, and
M.
Berninger
, “
Comparison of triature Doppler velocimetry and VISAR
,”
J. Phys.: Conf. Ser.
244
,
032045
(
2010
).
29.
J.
Macdonald
,
S. N.
Bland
, and
J.
Threadgold
, “
A fibre based triature interferometer for measuring rapidly evolving, ablatively driven plasma densities
,”
Rev. Sci. Instrum.
86
,
083506
(
2015
).
30.
R. G.
Priest
, “
Analysis of fiber interferometer utilizing 3 × 3 fiber coupler
,”
IEEE Trans. Microwave Theory Tech.
30
,
1589
(
1982
).
31.
T.
Tao
,
S.
Liu
,
H.
Ma
,
M.
Li
,
X.
Zhou
,
X.
Wang
, and
J.
Weng
, “
Twiddle factor neutralization method for heterodyne velocimetry
,”
Rev. Sci. Instrum.
85
,
013101
(
2014
).
32.
D. H.
Dolan
and
S. C.
Jones
, “
Push-pull analysis of photonic Doppler velocimetry measurements
,”
Rev. Sci. Instrum.
78
,
076102
(
2007
).
33.
W. F.
Hemsing
, “
Velocity sensing interferometer (VISAR) modification
,”
Rev. Sci. Instrum.
50
,
73
(
1979
).
34.
D.
Dolan
and
S.
Jones
, “
Thrive: A data reduction program for three-phase PDV/PDI and VISAR measurements
,” Technical Report No. SAND2008-3871,
Sandia National Laboratories
,
2008
, www.osti.gov/servlets/purl/942210.
35.
D. H.
Dolan
,
R. W.
Lemke
,
R. D.
McBride
,
M. R.
Martin
,
E.
Harding
,
D. G.
Dalton
,
B. E.
Blue
, and
S. S.
Walker
, “
Tracking an imploding cylinder with photonic Doppler velocimetry
,”
Rev. Sci. Instrum.
84
,
055102
(
2013
).
36.
D. H.
Dolan
,
T.
Ao
, and
O.
Hernandez
, “
Frequency-conversion photonic Doppler velocimetry with an inverted circulator
,”
Rev. Sci. Instrum.
83
,
026109
(
2012
).
37.
B.
Saleh
and
M.
Teich
,
Fundamentals of Photonics
, 2nd ed. (
Wiley
,
2007
).
38.
C.
Jiang
,
Y.
Li
,
Q.
Liu
,
X.
Zhou
, and
S. N.
Luo
, “
A 532 nm fiber-optic displacement interferometer for low-velocity impact experiments
,”
Rev. Sci. Instrum.
89
,
023101
(
2018
).
39.
G. M.
Hale
and
M. R.
Querry
, “
Optical constants of water in the 200-nm to 200-μm wavelength region
,”
Appl. Opt.
12
,
555
(
1973
).
40.
S.
Kedenburg
,
M.
Vieweg
,
T.
Gissibl
, and
H.
Giessen
, “
Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region
,”
Opt. Mater. Express
2
,
1588
(
2012
).
41.
J.
Olles
,
M.
Hudspeth
, and
T.
Vogler
, “
The effect of liquid tamping media on the growth of Richtmyer-Meshkov instability in copper
,”
J. Dyn. Behav. Mater.
(unpublished) (
2020
).
42.
R. G.
Smith
, “
Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering
,”
Appl. Opt.
11
,
2489
(
1972
).
43.
Y.
Aoki
,
K.
Tajima
, and
I.
Mito
, “
Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems
,”
J. Lightwave Technol.
6
,
710
(
1988
).
44.
A.
Kobyakov
,
M.
Sauer
, and
D.
Chowdhury
, “
Stimulated Brillouin scattering in optical fibers
,”
Adv. Opt. Photonics
2
,
1
(
2010
).
45.
P. D.
Dragic
, “
The acoustic velocity of Ge-doped silica fibers: A comparison of two models
,”
Int. J. Appl. Glass Sci.
1
,
330
(
2010
).
46.
M.
Martinelli
,
P.
Martelli
, and
S. M.
Pietralunga
, “
Polarization stabilization in optical communication systems
,”
J. Lightwave Technol.
24
,
4172
(
2006
).
47.
M. H.
Montgomery
and
D.
Odonaghue
, “
Theory of communication
,”
J. Inst. Electr. Eng.
93
,
429
(
1976
).
48.
J.
Devlaminck
,
J.
Luc
, and
P.-Y.
Chanal
, “
Digital signal processing for velocity measurements in dynamical material’s behaviour studies
,”
Rev. Sci. Instrum.
85
,
035109
(
2014
).
49.
S.
Liu
,
D.
Wang
,
T.
Li
,
G.
Chen
,
Z.
Li
, and
Q.
Peng
, “
Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform
,”
Rev. Sci. Instrum.
82
,
023103
(
2011
).
50.
D. H.
Dolan
and
P.
Specht
, “
VISAR analysis in the frequency domain
,”
J. Dyn. Behav. Mater.
3
,
407
(
2017
).
51.
F. J.
Harris
, “
On the use of windows for harmonic analysis with the discrete Fourier transform
,”
Proc. IEEE
66
,
51
(
1978
).
52.
G.
Arfken
and
H.
Weber
,
Mathematical Methods for Physicists
, 4th ed. (
Academic Press
,
San Diego
,
1995
).
53.
J. W.
Cooley
and
J. W.
Tukey
, “
An algorithm for the machine calculation of complex Fourier series
,”
Math. Comput.
19
,
297
(
1965
).
54.
T.
Ao
and
D.
Dolan
, “
SIRHEN: A data reduction program for photonic Doppler velocimetry measurements
,” Technical Report No. SAND2010-3628,
Sandia National Laboratories
,
2010
, www.osti.gov/servlets/purl/989357.
55.
D. H.
Dolan
, “
Accuracy and precision in photonic Doppler velocimetry
,”
Rev. Sci. Instrum.
81
,
053905
(
2010
).
56.
D.
Rife
and
R.
Boorstyn
, “
Single-tone parameter estimation from discrete-time observations
,”
IEEE Trans. Inf. Theory
20
,
591
(
1974
).
57.
M.
Montgomery
and
D.
O’Donoghue
, “
A derivation of the errors for least squares fitting to time series data
,”
Delta Scuti Star Newsletter
13
,
28
(
1999
).
58.
R.
Boyd
,
Radiometry and the Detection of Optical Radiation
(
John Wiley & Sons
,
New York
,
1983
).
59.
E.
Miller
,
E.
Larson
, and
K.
Lee
, “
Shot noise and fiber amplifier effects in photonic-Doppler velocimetry systems
,”
AIP Conf. Proc.
1979
,
160018
(
2018
).
60.
D.
Holtkamp
, “
Survey of optical velocimetry experiments - Applications of PDV, a heterodyne velocimeter
,” in
IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics
(
IEEE
,
2006
).
61.
G.
Prudhomme
,
P.
Mercier
, and
L.
Berthe
, “
PDV experiments on shock-loaded particles
,”
J. Phys.: Conf. Ser.
500
,
142027
(
2014
).
62.
J.-E.
Franzkowiak
,
G.
Prudhomme
,
P.
Mercier
,
S.
Lauriot
,
E.
Dubreuil
, and
L.
Berthe
, “
PDV-based estimation of ejecta particles’ mass-velocity function from shock-loaded tin experiment
,”
Rev. Sci. Instrum.
89
,
033901
(
2018
).
63.
A. N.
Kondratev
,
A. V.
Andriyash
,
M. V.
Astashkin
,
V. K.
Baranov
,
A. G.
Golubinskii
,
D. A.
Irinichev
,
A. Y.
Khatunkin
,
S. E.
Kuratov
,
V. A.
Mazanov
,
D. B.
Rogozkin
, and
S. N.
Stepushkin
, “
Photon Doppler velocimetry of ejecta from shock-loaded samples
,”
AIP Conf. Proc.
1979
,
080008
(
2018
).
64.
P. A.
Frugier
,
P.
Mercier
,
J.
Bénier
,
J.
Veaux
,
M.
Debruyne
,
C.
Rion
, and
E.
Dubreuil
, “
PDV and shock physics: Application to nitro methane shock-detonation transition and particles ejection
,” in
Novel Optical Systems Design and Optimization XII
, International Society for Optics and Photonics Vol. 7429, edited by
R. J.
Koshel
and
G. G.
Gregory
(
SPIE
,
2009
), pp.
316
326
.
65.
H.
Pei
,
W.
Huang
,
X.
Zhang
, and
X.
Zheng
, “
Measuring detonation wave profiles in plastic-bonded explosives using PDV
,”
AIP Adv.
9
,
015306
(
2019
).
66.
Y.
Lu
,
H.
Song
,
G. A.
Taber
,
D. R.
Foster
,
G. S.
Daehn
, and
W.
Zhang
, “
In-situ measurement of relative motion during ultrasonic spot welding of aluminum alloy using Photonic Doppler Velocimetry
,”
J. Mater. Process. Technol.
231
,
431
(
2016
).
67.
T.
Lee
,
Y.
Mao
,
R.
Gerth
,
A.
Vivek
, and
G.
Daehn
, “
Civilized explosive welding: Impact welding of thick aluminum to steel plates without explosives
,”
J. Manuf. Processes
36
,
550
(
2018
).
68.
M.
Zellner
and
G.
Vunnu
, “
Photon Doppler Velocimetry (PDV) characterization of shaped charge jet formation
,”
Procedia Eng.
58
,
88
(
2103
).
69.
B. J.
Jensen
,
F. J.
Cherne
,
M. B.
Prime
,
K.
Fezzaa
,
A. J.
Iverson
,
C. A.
Carlson
,
J. D.
Yeager
,
K. J.
Ramos
,
D. E.
Hooks
,
J. C.
Cooley
, and
G.
Dimonte
, “
Jet formation in cerium metal to examine material strength
,”
J. Appl. Phys.
118
,
195903
(
2015
).
70.
J.
Imbert
,
T.
Rahmaan
, and
M.
Worswick
, “
Interrupted pulse electromagnetic expanding ring test for sheet metal
,”
EPJ Web Conf.
94
,
01048
(
2015
).
71.
S.
Ward
,
C.
Braithwaite
, and
A.
Jardine
, “
The effects of nanostructure on the dynamic ductile fracture of high purity copper
,”
Procedia Eng.
197
,
23
(
2017
).
72.
T. M.
Hutchinson
 et al., “
Photonic Doppler velocimetry of ohmically-exploded aluminum surfaces
,”
Phys. Plasmas
(in press) (
2020
).
73.
A. D.
Curtis
,
A. A.
Banishev
,
W. L.
Shaw
, and
D. D.
Dlott
, “
Laser-driven flyer plates for shock compression science: Launch and target impact probed by photon Doppler velocimetry
,”
Rev. Sci. Instrum.
85
,
043908
(
2014
).
74.
D. D.
Mallick
,
M.
Zhao
,
J.
Parker
,
V.
Kannan
,
B. T.
Bosworth
,
D.
Sagapuram
,
M. A.
Foster
, and
K. T.
Ramesh
, “
Laser-driven flyers and nanosecond-resolved velocimetry for spall studies in thin metal foils
,”
Exp. Mech.
59
,
611
(
2019
).
75.
A.
Porwitzky
,
B. T.
Hutsel
,
C. T.
Seagle
,
T.
Ao
,
S.
Grant
,
A.
Bernstein
,
J.-F.
Lin
, and
T.
Ditmire
, “
Large time-varying inductance load for studying power flow on the z machine
,”
Phys. Rev. Accel. Beams
22
,
090401
(
2019
).
76.
G. R.
Fowles
,
G. E.
Duvall
,
J.
Asay
,
P.
Bellamy
,
F.
Feistmann
,
D.
Grady
,
T.
Michaels
, and
R.
Mitchell
, “
Gas gun for impact studies
,”
Rev. Sci. Instrum.
41
,
984
(
1970
).
77.
M.
Briggs
,
L.
Hull
, and
M.
Shinas
, “
Fundamental experiments in velocimetry
,” in
Shock Compression of Condensed Matter
, edited by
M.
Elert
(
AIP
,
2009
), Vol. 1195, p.
577
.
78.
G.
Sutherland
,
Y.
Gupta
, and
P.
Bellamy
, “
Pressure-time profile of multiply shocked carbon disulfide
,”
J. Appl. Phys.
59
,
1141
(
1986
).
79.
D. B.
Reisman
,
B. S.
Stoltzfus
,
W. A.
Stygar
,
K. N.
Austin
,
E. M.
Waisman
,
R. J.
Hickman
,
J.-P.
Davis
,
T. A.
Haill
,
M. D.
Knudson
,
C. T.
Seagle
,
J. L.
Brown
,
D. A.
Goerz
,
R. B.
Spielman
,
J. A.
Goldlust
, and
W. R.
Cravey
, “
Pulsed power accelerator for material physics experiments
,”
Phys. Rev. Spec. Top. Accel. Beams
18
,
090401
(
2015
).
80.
D. B.
Reisman
,
A.
Toor
,
R. C.
Cauble
,
C. A.
Hall
,
J. R.
Asay
,
M. D.
Knudson
, and
M. D.
Furnish
, “
Magnetically driven isentropic compression experiments on the Z accelerator
,”
J. Appl. Phys.
89
,
1625
(
2001
).
81.
E. J.
Nissen
and
D. H.
Dolan
, “
Temperature and rate effects in ramp-wave compression freezing of liquid water
,”
J. Appl. Phys.
126
,
015903
(
2019
).
82.
D. H.
Dolan
,
M. D.
Knudson
,
C. A.
Hall
, and
C.
Deeney
, “
A metastable limit for compressed liquid water
,”
Nat. Phys.
3
,
339
(
2007
).
83.
A. E.
Gleason
,
C. A.
Bolme
,
E.
Galtier
,
H. J.
Lee
,
E.
Granados
,
D. H.
Dolan
,
C. T.
Seagle
,
T.
Ao
,
S.
Ali
,
A.
Lazicki
,
D.
Swift
,
P.
Celliers
, and
W. L.
Mao
, “
Compression freezing kinetics of water to ice VII
,”
Phys. Rev. Lett.
119
,
025701
(
2017
).
84.
R. W.
Lemke
,
D. H.
Dolan
,
D. G.
Dalton
,
J. L.
Brown
,
K.
Tomlinson
,
G. R.
Robertson
,
M. D.
Knudson
,
E.
Harding
,
A. E.
Mattsson
,
J. H.
Carpenter
,
R. R.
Drake
,
K.
Cochrane
,
B. E.
Blue
,
A. C.
Robinson
, and
T. R.
Mattsson
, “
Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions
,”
J. Appl. Phys.
119
,
015904
(
2016
).
85.
P. F.
Knapp
,
M. R.
Martin
,
D. H.
Dolan
,
K.
Cochrane
,
D.
Dalton
,
J.-P.
Davis
,
C. A.
Jennings
,
G. P.
Loisel
,
D. H.
Romero
,
I. C.
Smith
,
E. P.
Yu
,
M. R.
Weis
,
T. R.
Mattsson
,
R. D.
McBride
,
K.
Peterson
,
J.
Schwarz
, and
D. B.
Sinars
, “
Direct measurement of the inertial confinement time in a magnetically driven implosion
,”
Phys. Plasmas
24
,
042708
(
2017
).
86.
R. W.
Lemke
,
M. D.
Knudson
,
D. E.
Bliss
,
K.
Cochrane
,
J.-P.
Davis
,
A. A.
Giunta
,
H. C.
Harjes
, and
S. A.
Slutz
, “
Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments
,”
J. Appl. Phys.
98
,
073530
(
2005
).
87.
M. A.
Barrios
,
T. R.
Boehly
,
D. G.
Hicks
,
D. E.
Fratanduono
,
J. H.
Eggert
,
G. W.
Collins
, and
D. D.
Meyerhofer
, “
Precision equation-of-state measurements on National Ignition Facility ablator materials from 1 to 12 Mbar using laser-driven shock waves
,”
J. Appl. Phys.
111
,
093515
(
2012
).
88.
M. D.
Knudson
and
M. P.
Desjarlais
, “
Shock compression of quartz to 1.6 TPa: Redefining a pressure standard
,”
Phys. Rev. Lett.
103
,
225501
(
2009
).
89.
D.
Dolan
, “
What does ‘velocity’ interferometry really measure?
,”
AIP Conf. Proc.
1195
,
589
(
2009
).
90.
C. R.
Johnson
,
J. W.
LaJeunesse
,
P. A.
Sable
,
A.
Dawson
,
A.
Hatzenbihler
, and
J. P.
Borg
, “
Photon Doppler velocimetry measurements of transverse surface velocities
,”
Rev. Sci. Instrum.
89
,
063106
(
2018
).
91.
D. D.
Mallick
,
M.
Zhao
,
B. T.
Bosworth
,
B. E.
Schuster
,
M. A.
Foster
, and
K. T.
Ramesh
, “
A simple dual-beam time-multiplexed Photon Doppler Velocimeter for pressure-shear plate impact experiments
,”
Exp. Mech.
59
,
41
(
2018
).
92.
M.
Mello
,
C.
Kettenbeil
,
M.
Bischann
, and
G.
Ravichandran
, “
Heterodyne diffracted beam Photonic Doppler velocimeter (DPDV) for measurement of transverse and normal particle velocities in pressure-shear plate impact experiments
,”
AIP Conf. Proc.
1979
,
160017
(
2018
).
93.
E. A.
Moro
and
M. E.
Briggs
, “
Simultaneous measurement of transverse speed and axial velocity from a single optical beam
,”
Rev. Sci. Instrum.
84
,
016110
(
2013
).
94.
J.
Jackson
,
Classical Electrodynamics
, 2nd ed. (
John Wiley & Sons
,
New York
,
1975
).
95.
D.
Dolan
, “
Foundations of VISAR analysis
,” Technical Report No. SAND2006-1950,
Sandia National Laboratories
,
2006
.
96.
D.
Chapman
,
D.
Eakins
,
D.
Williamson
, and
W.
Proud
, “
Index of refraction measurements and window corrections for PMMA under shock compression
,”
AIP Conf. Proc.
1426
,
442
(
2012
).
97.
J.
Wackerle
,
H. L.
Stacy
, and
J. C.
Dallman
, “
Refractive index effects for shocked windows in interface velocimetry
,”
Proc. SPIE
0832
,
72
(
1987
).
98.
D.
Hayes
, “
Unsteady compression waves in interferometer windows
,”
J. Appl. Phys.
89
,
6484
(
2001
).
99.
D. B.
Hayes
,
C. A.
Hall
,
J. R.
Asay
, and
M. D.
Knudson
, “
Continuous index of refraction measurements to 20 GPa
,”
J. Appl. Phys.
94
,
2331
(
2003
).
100.
S. C.
Jones
,
M. C.
Robinson
, and
Y. M.
Gupta
, “
Ordinary refractive index of sapphire in uniaxial tension and compression along the c axis
,”
J. Appl. Phys.
93
,
1023
(
2003
).
101.
D. E.
Fratanduono
,
J. H.
Eggert
,
M. C.
Akin
,
R.
Chau
, and
N. C.
Holmes
, “
A novel approach to Hugoniot measurements utilizing transparent crystals
,”
J. Appl. Phys.
114
,
043518
(
2013
).
102.
P. A.
Rigg
,
M. D.
Knudson
,
R. J.
Scharff
, and
R. S.
Hixson
, “
Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility
,”
J. Appl. Phys.
116
,
033515
(
2014
).
103.
L. E.
Kirsch
,
S. J.
Ali
,
D. E.
Fratanduono
,
R. G.
Kraus
,
D. G.
Braun
,
A.
Fernandez-Pañella
,
R. F.
Smith
,
J. M.
McNaney
, and
J. H.
Eggert
, “
Refractive index of lithium fluoride to 900 gigapascal and implications for dynamic equation of state measurements
,”
J. Appl. Phys.
125
,
175901
(
2019
).
104.
J.
Weng
,
X.
Wang
,
T.
Tao
,
C.
Liu
, and
H.
Tan
, “
Optic-microwave mixing velocimeter for superhigh velocity measurement
,”
Rev. Sci. Instrum.
82
,
123114
(
2011
).
105.
J. G.
Mance
,
B. M.
La Lone
,
D. H.
Dolan
,
S. L.
Payne
,
D. L.
Ramsey
, and
L. R.
Veeser
, “
Time-stretched photonic Doppler velocimetry
,”
Opt. Express
27
,
025022
(
2019
).
106.
D. D.
Bloomquist
and
S. A.
Sheffield
, “
Optically recording interferometer for velocity measurements with subnanosecond resolution
,”
J. Appl. Phys.
54
,
1717
(
1983
).
107.
J. R.
Danielson
,
E. P.
Daykin
,
A. B.
Diaz
,
D. L.
Doty
,
B. C.
Frogget
,
M. R.
Furlanetto
,
C. H.
Gallegos
,
M.
Gibo
,
A.
Garza
,
D. B.
Holtkamp
,
M. S.
Hutchins
,
C.
Perez
,
M.
Peña
,
V. T.
Romero
,
M. A.
Shinas
,
M. G.
Teel
, and
L. J.
Tabaka
, “
Measurement of an explosively driven hemispherical shell using 96 points of optical velocimetry
,”
J. Phys.: Conf. Ser.
500
,
142008
(
2014
).
108.
E.
Daykin
,
M.
Burk
,
D.
Holtkamp
,
E.
Miller
,
A.
Rutkowski
,
O.
Strand
,
M.
Pena
,
C.
Perez
, and
C.
Gallegos
, “
Multiplexed photonic Doppler velocimetry for large channel count experiments
,”
AIP Conf. Proc.
1793
,
160004
(
2017
).
109.
Spectral grids for WDM applications: DWDM frequency grid
,” Technical Report No. ITU-T G.694.1,
International Telecommunication Union
,
2012
, http://handle.itu.int/11.1002/1000/11482.
110.
R.
Slavik
,
G.
Marra
,
E.
Fokoua
,
N.
Baddela
,
N.
Wheeler
,
M.
Petrovich
,
F.
Poletti
, and
D.
Richardson
, “
Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibers
,”
Sci. Rep.
5
,
15447
(
2015
).
111.
J. W.
Goodman
, “
Some fundamental properties of speckle
,”
J. Opt. Soc. Am.
66
,
1145
(
1976
).
112.
J. R.
Asay
and
L. M.
Barker
, “
Interferometric measurement of shock-induced internal particle velocity and spatial variations of particle velocity
,”
J. Appl. Phys.
45
,
2540
(
1974
).
113.
T.
Ao
and
D. H.
Dolan
, “
Effect of window reflections on photonic Doppler velocimetry measurements
,”
Rev. Sci. Instrum.
82
,
023907
(
2011
).
114.
T.
Durrani
and
J.
Nightingale
, “
Probability distributions for discrete Fourier analysis
,”
Proc. Inst. Elec. Eng.
120
,
299
(
1973
).
You do not currently have access to this content.