Measurement of the phase behavior and (meta)stability of liquid formulations, including surfactant solutions, is required for the understanding of mixture thermodynamics, as well as their practical utilization. We report a microfluidic platform with a stepped temperature profile, imposed by a dual Peltier module, connected to an automated multiwell plate injector and optical setup, for rapid solution phase mapping. The measurement protocol is defined by the temperature step ΔTT1T2 (≲100 °C), volumetric flow rate Q ≡ ΔVt (≲50 μl/min), which implicitly set the thermal gradient ΔTt (≃0.1–50 °C/min), and measurement time (which must exceed the intrinsic timescale of the relevant phase transformation). Furthermore, U-shaped microchannels can assess the reversibility of such transformations, yielding a facile measurement of the metastable zone width of the phase diagram. By contrast with traditional approaches, the platform precisely controls the cooling and heating rates by tuning the flow rate, and the absolute temperature excursion by the hot and cold thermal profile, which remain stationary during operation, thus allowing the sequential and reproducible screening of large sample arrays. As a model system, we examined the transition from the micellar (L1) to the liquid crystalline lamellar phase (Lα), upon cooling, of aqueous solutions of sodium linear alkylbenzene sulfonate, a biodegradable anionic surfactant extensively employed in industry. Our findings are validated with quiescent optical microscopy and small angle neutron scattering data.

1.
T.
Hargreaves
,
Chemical Formulation: An Overview of Surfactant-Based Preparations Used in Everyday Life
(
Royal Society of Chemistry
,
2003
).
2.
R. G.
Laughlin
,
The Aqueous Phase Behavior of Surfactants
(
Academic
,
London
,
1994
).
3.
T. F.
Tadros
,
Applied Surfactants: Principles and Applications
(
Wiley-VCH
,
2005
).
4.
J. L.
Jones
and
T. C. B.
McLeish
, “
Rheological response of surfactant cubic phases
,”
Langmuir
11
,
785
792
(
1995
).
5.
D.
Myers
,
Surfactant Science and Technology
(
Wiley
,
2005
).
6.
I.
Johansson
and
P.
Somasundaran
,
Handbook for Cleaning/Decontamination of Surfaces
(
Elsevier
,
2007
).
7.
J. T.
Cabral
and
A.
Karim
, “
Discrete combinatorial investigation of polymer mixture phase boundaries
,”
Meas. Sci. Technol.
16
,
191
198
(
2004
).
8.
J.
Wang
,
D. R.
Hallinger
,
A. S.
Murr
,
A. R.
Buckalew
,
R. R.
Lougee
,
A. M.
Richard
,
S. C.
Laws
, and
T. E.
Stoker
, “
High-throughput screening and chemotype-enrichment analysis of ToxCast phase II chemicals evaluated for human sodium-iodide symporter (NIS) inhibition
,”
Environ. Int.
126
,
377
386
(
2019
).
9.
P.
Kheddo
,
J. E.
Bramham
,
R. J.
Dearman
,
S.
Uddin
,
C. F.
van der Walle
, and
A. P.
Golovanov
, “
Investigating liquid–liquid phase separation of a monoclonal antibody using solution-state NMR spectroscopy: Effect of ArgGlu and ArgHcl
,”
Mol. Pharmaceutics
14
,
2852
2860
(
2017
).
10.
L.
Gan
,
M.
Zhou
,
D.
Yang
, and
X.
Qiu
, “
Preparation and evaluation of carboxymethylated lignin as dispersant for aqueous graphite suspension using turbiscan lab analyzer
,”
J. Dispersion Sci. Technol.
34
,
644
650
(
2013
).
11.
J.
Liu
,
X.-F.
Huang
,
L.-J.
Lu
,
M.-X.
Li
,
J.-C.
Xu
, and
H.-P.
Deng
, “
Turbiscan lab® expert analysis of the biological demulsification of a water-in-oil emulsion by two biodemulsifiers
,”
J. Hazard. Mater.
190
,
214
221
(
2011
).
12.
D. J.
Mcclements
, “
Critical review of techniques and methodologies for characterization of emulsion stability
,”
Crit. Rev. Food Sci. Nutr.
47
,
611
649
(
2007
).
13.
D.
Lerche
and
T.
Sobisch
, “
Direct and accelerated characterization of formulation stability
,”
J. Dispersion Sci. Technol.
32
,
1799
1811
(
2011
).
14.
O.
Mengual
,
G.
Meunier
,
I.
Cayre
,
K.
Puech
, and
P.
Snabre
, in
Symposium on Analytical Sciences (6th SAS), Valencia, Spain, June 22–24, 1998
[“
TURBISCAN MA 2000: Multiple light scattering measurement for concentrated emulsion and suspension instability analysis
,”
Talanta
50
,
445
456
(
1999
)].
15.
B.
Sǩolovà
,
K.
Hudskà
,
P.
Pullmannovà
,
A.
Kovàcǐk
,
K.
Palàt
,
J.
Roh
,
J.
Fleddermann
,
I.
Estrela-Lopis
, and
K.
Vávrová
, “
Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: Infrared spectroscopy using deuterated lipids
,”
J. Phys. Chem. B
118
,
10460
10470
(
2014
).
16.
W.
Kong
,
S.
Li
,
H.
Ke
,
H.
Zhang
, and
J.
Baeyens
, “
The use of ultrasound probes to monitor multi-phase behavior in opaque systems
,”
Particuology
45
,
91
97
(
2019
).
17.
V. E.
Blair
,
K.
Celebi
,
K.
Müllen
, and
J.
Vermant
, “
Electrically conductive thin films derived from bulk graphite and liquid-liquid interface assembly
,”
Adv. Mater. Interfaces
6
,
1801570
(
2019
).
18.
G. M.
Whitesides
, “
The origins and the future of microfluidics
,”
Nature
442
,
368
(
2006
).
19.
T. M.
Squires
and
S. R.
Quake
, “
Microfluidics: Fluid physics at the nanoliter scale
,”
Rev. Mod. Phys.
77
,
977
(
2005
).
20.
Y.
Shangguan
,
D.
Guo
,
H.
Feng
,
Y.
Li
,
X.
Gong
,
Q.
Chen
,
B.
Zheng
, and
C.
Wu
, “
Mapping phase diagrams of polymer solutions by a combination of microfluidic solution droplets and laser light-scattering detection
,”
Macromolecules
47
,
2496
2502
(
2014
).
21.
P.
Laval
,
N.
Lisai
,
J.-B.
Salmon
, and
M.
Joanicot
, “
A microfluidic device based on droplet storage for screening solubility diagrams
,”
Lab Chip
7
,
829
834
(
2007
).
22.
J.-U.
Shim
,
G.
Cristobal
,
D. R.
Link
,
T.
Thorsen
,
Y.
Jia
,
K.
Piattelli
, and
S.
Fraden
, “
Control and measurement of the phase behavior of aqueous solutions using microfluidics
,”
J. Am. Chem. Soc.
129
,
8825
8835
(
2007
).
23.
J.
Leng
,
M.
Joanicot
, and
A.
Ajdari
, “
Microfluidic exploration of the phase diagram of a surfactant/water binary system
,”
Langmuir
23
,
2315
2317
(
2007
).
24.
S. D.
Hudson
,
F. R.
Phelan
,
M. D.
Handler
,
J. T.
Cabral
,
K. B.
Migler
, and
E. J.
Amis
, “
Microfluidic analog of the four-roll mill
,”
Appl. Phys. Lett.
85
,
335
337
(
2004
).
25.
L.
Zhang
,
E. N.
Wang
,
K. E.
Goodson
, and
T. W.
Kenny
, “
Phase change phenomena in silicon microchannels
,”
Int. J. Heat Mass Transfer
48
,
1572
1582
(
2005
).
26.
A. S.
Poulos
,
M.
Nania
,
P.
Lapham
,
R. M.
Miller
,
A. J.
Smith
,
H.
Tantawy
,
J.
Caragay
,
J.
Gummel
,
O.
Ces
,
E. S. J.
Robles
, and
J. T.
Cabral
, “
Microfluidic SAXS study of lamellar and multilamellar vesicle phases of linear sodium alkylbenzenesulfonate surfactant with intrinsic isomeric distribution
,”
Langmuir
32
,
5852
5861
(
2016
).
27.
M.
Adamo
,
A. S.
Poulos
,
R. M.
Miller
,
C. G.
Lopez
,
A.
Martel
,
L.
Porcar
, and
J. T.
Cabral
, “
Rapid contrast matching by microfluidic sans
,”
Lab Chip
17
,
1559
1569
(
2017
).
28.
H. P.
Martin
,
N. J.
Brooks
,
J. M.
Seddon
,
P. F.
Luckham
,
N. J.
Terrill
,
A. J.
Kowalski
, and
J. T.
Cabral
, “
Microfluidic processing of concentrated surfactant mixtures: Online SAXS, microscopy and rheology
,”
Soft Matter
12
,
1750
1758
(
2016
).
29.
M. U.
Kopp
,
A. J.
De Mello
, and
A.
Manz
, “
Chemical amplification: Continuous-flow PCR on a chip
,”
Science
280
,
1046
1048
(
1998
).
30.
C. D.
Ahrberg
,
A.
Manz
, and
B. G.
Chung
, “
Polymerase chain reaction in microfluidic devices
,”
Lab Chip
16
,
3866
3884
(
2016
).
31.
J. J.
Scheibel
, “
The evolution of anionic surfactant technology to meet the requirements of the laundry detergent industry
,”
J. Surfactants Deterg.
7
,
319
328
(
2004
).
32.
S.
Khodaparast
,
W.
Sharratt
,
H.
Wang
,
E. S. J.
Robles
,
R.
Dalgliesh
, and
J. T.
Cabral
, “
Spontaneous formation of multilamellar vesicles from aqueous micellar solutions of sodium linear alkylbenzene sulfonate (NaLAS)
,”
J. Colloid Interface Sci.
546
,
221
230
(
2019
).
33.
J. T.
Cabral
,
S. D.
Hudson
,
C.
Harrison
, and
J. F.
Douglas
, “
Frontal photopolymerization for microfluidic applications
,”
Langmuir
20
,
10020
10029
(
2004
).
34.
J. A.
Stewart
,
A.
Saiani
,
A.
Bayly
, and
G. J. T.
Tiddy
,
Colloids Surf., A
338
,
155
161
(
2009
).
35.
R. M.
Miller
,
O.
Ces
,
N. J.
Brooks
,
E. S. J.
Robles
, and
J. T.
Cabral
, “
Crystallization of sodium dodecyl sulfate-water micellar solutions under linear cooling
,”
Cryst. Growth Des.
17
,
2428
2437
(
2017
).

Supplementary Material

You do not currently have access to this content.