The novel circular-array based real-time ultrasonic imaging technique using an ultrasonic camera has been proposed in this paper for imaging of a fuel sub-assembly (FSA) of a fast breeder reactor. The developed ultrasonic camera-based system provides real-time images of the top-head region of the FSA in a high-temperature environment. For the circular-array based ultrasonic imaging, the entire circular-array has been divided into the various arcs, and the address-based analog multiplexing scheme has been proposed in such a way that all channels of the specific arc are selected concurrently (transducer excitation, data acquisition, and data processing and transferring). Various data processing algorithms are proposed and implemented for multi-channel ultrasonic data processing in real-time. For the experimentation, the complete 18-channel ultrasonic camera system has been designed, developed, and evaluated in the laboratory. The performance evaluation of the developed circular-array based ultrasonic camera has been shown by acquiring the real-time images of the water-immersed dummy FSA in elevated temperature. Furthermore, both qualitative visualization and quantitative measurements of growth and bowing of the FSA top-head are presented.

1.
T. B.
Cochran
,
H. A.
Feiveson
,
W.
Patterson
,
G.
Pshakin
,
M.
Ramana
,
M.
Schneider
,
T.
Suzuki
, and
F.
Von Hippel
,
Fast Breeder Reactor Programs: History and Status
(
International Panel on Fissile Materials IPFM
,
2010
).
2.
Nuclear technology review 2014, IAEA, Geneva, Technical Report No. IAEA/NTR/2014, 2015, available online at https://www.iaea.org/sites/default/files/ntr2014.pdf.
3.
J. W.
Griffin
,
T. J.
Peters
,
G. J.
Posakony
,
H.-T.
Chien
,
L. J.
Bond
,
K. M.
Denslow
,
S.-H.
Sheen
, and
P.
Raptis
, “
Under-sodium viewing: A review of ultrasonic imaging technology for liquid metal fast reactors
,” Technical Report No. PNNL-18292, Pacific Northwest National Lab. (PNNL), Richland, WA (United States), 2009.
4.
E. G.
Tarpara
,
V.
Patankar
,
V.
Vijayan
 et al., “
Under sodium ultrasonic viewing for fast breeder reactors: A review
,” Technical Report No. BARC–2016/E/014, Bhabha Atomic Research Centre,
2016
.
5.
V.
Patankar
,
S.
Lalwani
,
A.
Agashe
,
G.
Randale
,
R.
Chaurasia
,
P.
Jyothi
,
R.
Jain
,
T.
Ananthakrishnan
,
C.
Pithawa
,
C.
Asokane
 et al., “
Instrumentation & control system for under sodium ultrasonic scanner of PFBR
,” in
Proceedings of the National Seminar & Exhibition on Non-Destructive Evaluation NDE 2011
(
NDT.net
,
2011
), pp.
8
10
.
6.
V.
Patankar
,
C.
Reetesh
,
C.
Asokane
,
T.
Gunasekaran
,
V.
Vijayan
, and
J.
Sylvia
, “
Design and development of automated ultrasonic instrumentation for detection of growth and bowing of under-sodium fuel subassemblies of FBR
,” in
Proceedings of NDE 2009 Seminar, Trichy, TN
(
NDT.net
,
2009
), pp.
10
12
.
7.
B.
Raj
,
S. L.
Mannan
,
P. R. V.
Rao
, and
M. D.
Mathew
, “
Development of fuels and structural materials for fast breeder reactors
,”
Sadhana
27
(
5
),
527
558
(
2002
).
8.
S.
Mannan
,
S.
Chetal
,
B.
Raj
, and
S.
Bhoje
, “
Selection of materials for prototype fast breeder reactor
,”
Trans. Indian Inst. Met.
56
(
2
),
155
178
(
2003
).
9.
K.
Swaminathan
,
A.
Rajendran
, and
G.
Elumalai
, “
The development and deployment of an ultrasonic under-sodium viewing system in the fast breeder test reactor
,”
IEEE Trans. Nucl. Sci.
37
(
5
),
1571
1577
(
1990
).
10.
R.
Hans
,
E.
Kranz
, and
H.
Weiss
, “
Under sodium viewing—A method to identify objects in an opaque medium
,” in
Proceedings of the 3rd International Conference on Liquid Metal Engineering and Technology, Oxford, 9–13 April 1984
.
11.
J.
Taguchi
,
N.
Uesugi
,
T.
Miyazawa
,
K.
Sato
, and
S.
Horikoshi
, “
An ultrasonic viewing system in liquid sodium
,”
IEEE Trans. Nucl. Sci.
27
(
1
),
821
825
(
1980
).
12.
R.
Ord
and
R.
Smith
, “
Development of an under-sodium ultrasonic scanner for in-reactor surveillance
,” Technical Report No. HEDL-TME 72-91, Hanford Engineering Development Lab., Richland, Wash., 1972.
13.
L. J.
Bond
,
J. W.
Griffin
,
G. J.
Posakony
,
R. V.
Harris
, and
D. L.
Baldwin
, “
Materials issues in high temperature ultrasonic transducers for under-sodium viewing
,”
AIP Conf. Proc.
1430
(
1
),
1617
1624
(
2012
).
14.
J. W.
Griffin
,
G. J.
Posakony
,
R. V.
Harris
,
D. L.
Baldwin
,
A. M.
Jones
, and
L. J.
Bond
, “
High temperature ultrasonic transducers for in-service inspection of liquid metal fast reactors
,” in
Proceedings of the 2011 IEEE International Ultrasonics Symposium
(
IEEE
,
2011
), pp.
1924
1927
.
15.
V.
Patankar
,
R.
Jain
,
S.
Lalwani
,
A.
Agashe
,
G.
Randale
,
P.
Jyothi
,
P.
Selvam
,
N. V.
Varier
,
T.
Ananthakrishnan
, and
C.
Pithawa
, “
Sweep-arm scanning technique for core-mapping of fuel sub-assemblies of fast breeder reactor
,” in
Asia Pacific Conference on Non-Destructive Testing (14th APCNDT)
.
16.
L. M.
Barrett
,
J. A.
McKnight
, and
J. R.
Forthergill
, “
Ultrasonic viewing in fast reactors
,”
Phys. Technol.
15
(
6
),
308
(
1984
).
17.
J.
McKnight
,
E.
Burton
, and
P.
Fenemore
, “
Recent advances in the technology of under-sodium inspection in lmfbrs
,” in
Proceedings of the 3rd International Conference on Liquid Metal Engineering and Technology, Oxford, 9–13 April 1984
.
18.
D.
James
and
J.
Ford
, Review of fast reactor in-service inspection practice, European Commission, Directorate-General XIII, Telecommunications, 1996.
19.
F.
Baque
, “
Review of in-service inspection and repair technique developments for French liquid metal fast reactors
,”
Nucl. Technol.
150
(
1
),
67
78
(
2005
).
20.
R.
Hans
,
E.
Kranz
, and
H.
Weiss
, “
Under sodium viewing-a method to identify objects in an opaque medium
,” in
Proceedings of the 3rd International Conference on Liquid Metal Engineering and Technology, Oxford, 9–13 April 1984
.
21.
H.
Karasawa
,
M.
Izumi
,
T.
Suzuki
,
S.
Nagai
,
M.
Tamura
, and
S.
Fujimori
, “
Development of under-sodium three-dimensional visual inspection technique using matrix-arrayed ultrasonic transducer
,”
J. Nucl. Sci. Technol.
37
(
9
),
769
779
(
2000
).
22.
E. G.
Tarpara
and
V. H.
Patankar
, “
Lossless and lossy modeling of ultrasonic imaging system for immersion applications: Simulation and experimentation
,”
Comput. Electr. Eng.
71
,
251
264
(
2018
).
23.
E. G.
Tarpara
, “
Design and development of reconfigurable embedded system for real-time acquisition and processing of multichannel ultrasonic signals
,”
IET Sci. Meas. Technol.
13
(
10
),
1048
1058
(
2019
).
24.
O.
Rompelman
and
H. H.
Ros
, “
Coherent averaging technique: A tutorial review part. 1: Noise reduction and the equivalent filter
,”
J. Biomed. Eng.
8
(
1
),
24
29
(
1986
).
25.
P. R.
Smith
,
D. M. J.
Cowell
,
B.
Raiton
,
C. V.
Ky
, and
S.
Freear
, “
Ultrasound array transmitter architecture with high timing resolution using embedded phase-locked loops
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
59
(
1
),
40
49
(
2012
).
26.
E. G.
Tarpara
,
V.
Patankar
,
H.
Jain
, and
N.
Pavankumar
, “
Ultrasonic camera: A matrix-based real-time ultrasonic imaging system for immersion applications
,”
J. Instrum.
14
(
11
),
11033
(
2019
).
You do not currently have access to this content.