Conventional thermionic microwave and radio frequency (RF) guns can offer high average beam current, which is important for synchrotron light and terahertz (THz) radiation source facilities, as well as for industrial applications. For example, the Advanced Photon Source at Argonne National Laboratory is a national synchrotron-radiation light source research facility that utilizes thermionic RF guns. However, these existing thermionic guns are bulky, difficult to handle and install, easily detuned, very sensitive to thermal expansion, and due for a major upgrade and replacement. In this paper, we present the design of a new, more stable, and reliable gun with optimized electromagnetic performance, improved thermal engineering, and a more robust cathode mounting technique, which is a critical step to improve the performance of existing and future light sources, industrial accelerators, and electron beam-driven THz sources. We will also present a fabricated gun prototype and show results of high-power and beam tests.

1.
E.
Tanabe
,
M.
Borland
,
M. C.
Green
,
R. H.
Miller
,
L. V.
Nelson
,
J.
Weaver
, and
H.
Wiedemann
, “
A 2-MeV microwave thermionic gun
,” SLAC-PUB-50.54,
1989
.
2.
J. W.
Lewellen
,
S.
Biedron
,
A.
Lumpkin
,
S. V.
Milton
,
A.
Nassiri
,
S.
Pasky
,
G.
Travish
, and
M.
White
, “
Operation of the APS RF gun
,” in
Proceedings of the 1999 Particle Accelerator Conference
(
IEEE
,
1999
), Vol. 3, pp.
1979
1981
.
3.
M.
Borland
, “
Cavity design and beam simulations for the APS RF gun
,” APS Light Source Note, LS-186,
1991
, p.
15
.
4.
W.
Jansma
, “
RF electron gun mechanical repair
,” 2013 APS Accelerator Systems Division Seminar Series,
2013
.
5.
Y.
Sun
, private communication (
2016
).
6.
A. V.
Smirnov
,
R.
Agustsson
,
W. J.
Berg
,
S.
Boucher
,
J.
Dooling
,
T.
Campese
,
Y.
Chen
,
L.
Erwin
,
B.
Jacobson
,
J.
Hartzell
 et al., “
Observation of a variable sub-THz radiation driven by a low energy electron beam from a thermionic RF electron gun
,”
Phys. Rev. Spec. Top.–Accel. Beams
18
,
090703
(
2015
).
7.
A. V.
Smirnov
,
R.
Agustsson
,
S.
Boucher
,
T.
Campese
,
Y.
Chen
,
J.
Hartzell
,
B.
Jacobson
,
A.
Murokh
,
F. H.
O’Shea
,
E.
Spranza
 et al., “
THz and sub-THz capabilities of a table-top radiation source driven by an RF thermionic electron gun
,” in
Proceedings of NAPAC2016, Chicago, IL, USA
(
JACoW
,
2016
), p.
WEPOB48
.
8.
See https://www.cathode.com/c_cathode.htm for cathode parameters.
9.
K.
Beczek
,
J. W.
Lewellen
,
A.
Nassiri
, and
E.
Tanabe
, “
A rationalized approach to thermionic RF gun design
,” in
Proceedings of 2001 PAC
,
Chicago
,
2001
.
10.
D. P.
Pritzkau
, “
RF pulsed heating
,” SLAC Report 577, UC-414,
2001
.
11.
A.
Cahill
,
M.
Dal Forno
, and
V. A.
Dolgashev
, “
TM01 mode launcher for use in high brightness photoguns
,” in
Proceedings of IPAC2016
,
Busan, Korea
,
2016
.
13.
See https://www.uspas.fnal.gov/materials/12MSU/emitlect.pdf for emittance calculation methodics.
14.
M.
Gusarova
,
V. I.
Kaminsky
,
L. V.
Kravchuk
,
S. V.
Kutsaev
,
M. V.
Lalayan
,
N. P.
Sobenin
, and
S. G.
Tarasov
, “
Multipacting simulation in accelerating RF structures
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
599
(
1
),
100
105
(
2009
).
15.
M.
Gusarova
,
S.
Khudyakov
,
I. I.
Petrushina
, and
Ya. V.
Shashkov
, “
New possibilities of MultP-M code
,” in
Proceedings of the 5th International Particle Accelerator Conference
(
JACoW
,
2014
), pp.
433
435
.
16.
I.
Bojko
,
N.
Hilleret
, and
C.
Scheuerlein
, “
The influence of air exposures and thermal treatments on the secondary electron yield of copper
,” LHC Project Report 376,
CERN
,
2000
.
19.
T. L.
Bergman
,
A. S.
Lavin
,
F. P.
Incropera
, and
D. P.
DeWitt
,
Fundamentals of Heat and Mass Transfer
, 7th ed. (
Wiley & Sons
,
2011
).
21.
See https://www.hvproducts.de/files/k1-p.pdf for modulator parameters.
You do not currently have access to this content.