This study presents a new method for measuring the Seebeck coefficient under high pressure in a multi-anvil apparatus. The application of a dual-heating system enables precise control of the temperature difference between both ends of the sample in a high-pressure environment. Two pairs of W–Re thermocouples were employed at both ends of the sample to monitor and control the temperature difference, and independent probes were arranged to monitor the electromotive force (emf) produced by temperature oscillation at a given target temperature. The temperature difference was controlled within 1 K during the resistivity measurements to eliminate the influence of the emf owing to a sample temperature gradient. The Seebeck measurement was successfully measured from room temperature to 1400 K and was obtained by averaging the two measured values with opposite thermal gradient directions (∼20 K). Thermoelectric properties were measured on disk-shaped p-type Si wafers with two different carrier concentrations as a reference for high Seebeck coefficients. This method is effective to determine the thermoelectric power of materials under pressure.

1.
M. W.
Schaefer
and
A. W.
Webb
,
Rev. Sci. Instrum.
59
,
2479
(
1988
).
2.
S. V.
Ovsyannikov
and
V. V.
Shchennikov
,
Phys. Status Solidi B
241
(
14
),
3231
3234
(
2004
).
3.
S. V.
Ovsyannikov
,
V. V.
Shchennikov
,
Y. S.
Ponosov
,
S. V.
Gudina
 et al,
J. Phys. D: Appl. Phys.
37
,
1151
1157
(
2004
).
4.
O. B.
Tsiok
,
L. G.
Khvostantsev
,
I. A.
Smirnov
, and
A. V.
Golubkov
,
J. Exp. Theor. Phys.
100
,
752
(
2005
).
5.
N. V.
Morozova
,
S. V.
Ovsyannikov
,
I. V.
Korobeinikov
,
A. E.
Karkin
,
K.
Takarabe
,
Y.
Mori
,
S.
Nakamura
, and
V. V.
Shchennikov
,
J. Appl. Phys.
115
,
213705
(
2014
).
6.
V. V.
Shchennikov
and
S. V.
Ovsyannikov
,
Solid State Commun.
126
,
373
(
2003
).
7.
S. V.
Ovsyannikov
and
V. V.
Shchennikov
,
Appl. Phys. Lett.
90
,
122103
(
2007
).
8.
B.
Chen
,
Y.
Li
, and
Z.-Y.
Sun
,
J. Electron. Mater.
47
,
3099
(
2018
).
9.
N. V.
Morozova
,
I. V.
Korobeinikov
, and
S. V.
Ovsyannikov
,
J. Appl. Phys.
125
,
220901
(
2019
).
10.
R. N.
Schock
,
A.
Duba
, and
T. J.
Shankland
,
J. Geophys. Res.
94
,
5829
5839
, (
1989
).
11.
S.
Constable
and
J. J.
Roberts
,
Phys. Chem. Miner.
24
,
319
325
(
1997
).
12.
V. V.
Shchennikov
,
S. V.
Ovsyannikov
,
A. Y.
Derevskov
, and
V. V.
Shchennikov
, Jr.
,
J. Phys. Chem. Sol.
67
,
2203
2209
(
2006
).
13.
S. V.
Ovsyannikov
,
V. V.
Shchennikov
,
G. V.
Vorontsov
,
A. Y.
Manakov
 et al,
J. Appl. Phys.
104
,
053713
(
2008
).
14.
V. V.
Shchennikov
,
S. V.
Ovsyannikov
,
G. V.
Vorontsov
, and
V. V.
Kulbachinskii
,
J. Phys.: Conf. Ser.
215
,
012185
(
2010
).
15.
T.
Yoshino
,
Surv. Geophys.
31
,
163
206
(
2010
).
16.
M.
Osako
,
E.
Ito
, and
A.
Yoneda
,
Phys. Earth Planet. Inter.
143-144
,
311
320
(
2004
).
17.
M. K.
Jacobsen
,
W.
Liu
, and
B.
Li
,
Rev. Sci. Instrum.
83
,
093903
(
2012
).
18.
B.
Yuan
,
Q.
Tao
,
X.
Zhao
,
K.
Cao
,
T.
Cui
,
X.
Wang
, and
P.
Zhu
,
Rev. Sci. Instrum.
85
,
013904
(
2014
).
19.
J.
Martin
,
T.
Tritt
, and
C.
Uher
,
J. Appl. Phys.
108
,
121101
(
2010
).
20.
V.
Ponnambalam
,
S.
Lindsey
,
N. S.
Hickman
, and
T. M.
Tritt
,
Rev. Sci. Instrum.
77
,
073904
(
2006
).
21.
O.
Yamashita
,
J. Appl. Phys.
95
,
178
183
(
2004
).
22.
F.
Salleh
,
K.
Asai
,
A.
Ishida
, and
H.
Ikeda
,
Appl. Phys. Exp.
2
,
071203
(
2009
).
23.
E.
Ito
,
T.
Katsura
,
D.
Yamazaki
,
A.
Yoneda
,
M.
Tado
,
T.
Ochi
,
E.
Nishibara
, and
A.
Nakamura
,
Phys. Earth Planet. Inter.
174
,
264
269
(
2009
).
24.
T.
Yoshino
,
T.
Matsuzaki
,
S.
Yamashita
, and
T.
Katsura
,
Nature
443
,
973
976
(
2006
).
25.
A.
Ohishi
,
X.
Xie
,
Y.
Miyazaki
,
Y.
Aikebaier
,
H.
Muta
,
K.
Kurosaki
,
S.
Yamanaka
,
N.
Uchida
, and
T.
Tada
,
Jpn. J. Appl. Phys., Part 1
54
,
071301
(
2015
).
26.
N. F.
Hinsche
,
I.
Mertig
, and
P.
Zahn
,
J. Phys.: Condens. Matter
23
,
295502
(
2011
).
27.
A.
Stranz
,
J.
Kahler
,
A.
Waag
, and
E.
Peiner
,
J. Electron. Mater.
42
,
2381
(
2013
).
28.
A.
Jayaraman
,
W.
Klement
, and
G. C.
Kennedy
,
Phys. Rev.
130
,
540
(
1963
).
29.
F. P.
Bundy
,
J. Chem. Phys.
41
,
3809
(
1964
).
30.
J.
Lees
and
B. H. J.
Williamson
,
Nature
208
,
278
(
1965
).
31.
V. V.
Brazhkin
,
A. G.
Lyapin
,
S. V.
Popova
, and
R. N.
Voloshin
,
Phys. Rev. B
51
,
7549
(
1995
).
32.
G. A.
Voronin
,
C.
Pantea
,
T. W.
Zerda
,
L.
Wang
, and
Y.
Zhao
,
Phys. Rev. B
68
,
020102
(
2003
).
33.
A.
Kubo
,
Y.
Wang
,
C. E.
Runge
,
T.
Uchida
,
B.
Kiefer
,
N.
Nishiyama
, and
T. S.
Duffy
,
J. Phys. Chem. Solid.
69
,
2255
2260
(
2008
).
34.
T. H.
Geballe
and
G. W.
Hull
,
Phys. Rev.
98
,
940
(
1955
).
35.
G.
Masetti
,
M.
Severi
, and
S.
Solmi
,
IEEE Trans. Electron Devices
30
,
764
(
1983
).
36.
L.
Weber
and
E.
Gmelin
,
Appl. Phys. A
53
,
136
(
1991
).
37.
M.
Akasaka
,
T.
Iida
,
A.
Matsumoto
,
K.
Yamanaka
,
Y.
Takanashi
,
T.
Imai
, and
N.
Hamada
,
J. Appl. Phys.
104
,
013703
(
2008
).
You do not currently have access to this content.