Plants represent an essential part of future life support systems that will enable human space travel to distant planets and their colonization. Therefore, insights into changes and adaptations of plants in microgravity are of great importance. Despite considerable efforts, we still know very little about how plants respond to microgravity environments on the molecular level, partly due to a lack of sufficient hardware and flight opportunities. The plant Arabidopsis thaliana, the subject of this study, represents a well-studied model organism in gravitational biology, particularly for the analysis of transcriptional and metabolic changes. To overcome the limitations of previous plant hardware that often led to secondary effects and to allow for the extraction not only of RNA but also of phytohormones and proteins, we developed a new experimental platform, called ARABIDOMICS, for exposure and fixation under altered gravity conditions. Arabidopsis seedlings were exposed to hypergravity during launch and microgravity during the free-fall period of the MAPHEUS 5 sounding rocket. Seedlings were chemically fixed inflight at defined time points, and RNA and phytohormones were subsequently analyzed in the laboratory. RNA and phytohormones extracted from the fixed biological samples were of excellent quality. Changes in the phytohormone content of jasmonate, auxin, and several cytokinins were observed in response to hypergravity and microgravity.

1.
N.
Hausmann
,
S.
Fengler
,
A.
Hennig
,
M.
Franz-Wachtel
,
R.
Hampp
, and
M.
Neef
,
Plant Biol
16
,
120
(
2014
).
2.
A.-L.
Paul
,
H. G.
Levine
,
W.
McLamb
,
K. L.
Norwood
,
D.
Reed
,
G. W.
Stutte
,
H.
William Wells
, and
R. J.
Ferl
,
Acta Astronaut.
56
,
623
(
2005
).
3.
D.
Volkmann
,
B.
Buchen
,
Z.
Hejnowicz
,
M.
Tewinkel
, and
A.
Sievers
,
Planta
185
,
153
(
1991
).
4.
M.
Martzivanou
,
M.
Babbick
,
M.
Cogoli-Greuter
, and
R.
Hampp
,
Protoplasma
229
,
155
(
2006
).
5.
P.
Preu
and
M.
Braun
,
Acta Astronaut.
94
,
584
(
2014
).
6.
V. D.
Kern
,
F. D.
Sack
,
N. J.
White
,
K.
Anderson
,
W.
Wells
, and
C.
Martin
,
Adv. Space Res.
24
,
775
(
1999
).
7.
J.
Hauslage
,
Funktionelle Charakterisierung von Frühen Graviperzeptionsmechanismen in Pflanzen
(
Rheinische Friedrich-Wilhelms-Universität Bonn
,
2008
).
8.
A.
Horn
, “
Design, construction and testing of a new shock freezing system during parabolic flight
,” M.S. thesis,
Lulea University of Technology
,
2007
.
9.
M.
Böhmer
and
E.
Schleiff
,
EMBO Rep.
20
,
e48541
(
2019
).
10.
M.
Braun
,
M.
Böhmer
,
D.-P.
Häder
,
R.
Hemmersbach
, and
K.
Palme
,
Gravitational Biology I
(
Springer International Publishing
,
Cham
,
2018
).
11.
W.
Grunewald
and
J.
Friml
,
EMBO J.
29
,
2700
(
2010
).
12.
N.
Cholodny
,
Biol. Zentralbl.
47
,
604
(
1927
).
13.
F.
Went
,
Proc. K. Ned. Akad. Wet.
30
,
10
(
1926
).
14.
C.
Gutjahr
,
M.
Riemann
,
A.
Müller
,
P.
Düchting
,
E. W.
Weiler
, and
P.
Nick
,
Planta
222
,
575
(
2005
).
15.
M.
Schäfer
,
C.
Brütting
,
I. T.
Baldwin
, and
M.
Kallenbach
,
Plant Methods
12
,
30
(
2016
).
17.
P.
Ewels
,
M.
Magnusson
,
S.
Lundin
, and
M.
Käller
,
Bioinformatics
32
,
3047
(
2016
).
18.
K.
Wakabayashi
,
K.
Soga
,
T.
Hoson
,
T.
Kotake
,
M.
Kojima
,
H.
Sakakibara
,
T.
Yamazaki
,
A.
Higashibata
,
N.
Ishioka
,
T.
Shimazu
, and
M.
Kamada
,
Physiol. Plant.
161
,
285
(
2017
).
19.
M.
Maccarrone
,
M.
Bari
,
N.
Battista
, and
A.
Finazzi-Agrò
,
Biophys. Chem.
90
,
303
(
2001
).
You do not currently have access to this content.