Elastic properties of a granular packing show a nonlinear behavior determined by its discrete structure and nonlinear inter-grain force laws. Acoustic waves show a transition from constant, pressure-dependent sound speed to a shock-wave-like behavior with an amplitude-determined propagation speed. This becomes increasingly visible at low static confinement pressure as the transient regime shifts to lower wave amplitudes for lower static pressure. In microgravity, confinement pressure can be orders of magnitude lower than in a ground-based experiment. In addition, the absence of hydrostatic gradients allows for much more homogeneous and isotropic pressure distribution. We present a novel apparatus for acoustic wave transmission measurements at such low packing pressures. A pressure control loop is implemented by using a microcontroller that monitors static force sensor readings and adjusts the position of a movable wall with a linear-motor until the desired pressure is reached. Measurements of acoustic waves are possible using accelerometers embedded in the granular packing as well as piezos. For excitation, we use a voice-coil-driven wall, with a large variety of signal shapes, frequencies, and amplitudes. This enables experiments in both the linear and strongly nonlinear regimes.

1.
C.-h.
Liu
and
S. R.
Nagel
, “
Sound in a granular material: Disorder and nonlinearity
,”
Phys. Rev. B
48
,
15646
15650
(
1993
).
2.
X.
Jia
,
C.
Caroli
, and
B.
Velicky
, “
Ultrasound propagation in externally stressed granular media
,”
Phys. Rev. Lett.
82
,
1863
1866
(
1999
).
3.
K.
Walton
, “
The effective elastic moduli of a random packing of spheres
,”
J. Mech. Phys. Solids
35
,
213
226
(
1987
).
4.
P. J.
Digby
, “
The effective elastic moduli of porous granular rocks
,”
J. Appl. Mech.
48
,
803
(
1981
).
5.
J.
Goddard
, “
Nonlinear elasticity and pressure-dependent wave speeds in granular media
,”
Proc. R. Soc. A
430
,
105
131
(
1990
).
6.
C.
Coste
and
B.
Gilles
, “
Sound propagation in a constrained lattice of beads: High-frequency behavior and dispersion relation
,”
Phys. Rev. E
77
,
021302
(
2008
).
7.
X.
Jia
, “
Codalike multiple scattering of elastic waves in dense granular media
,”
Phys. Rev. Lett.
93
,
154303
(
2004
).
8.
T.
Travers
,
M.
Ammi
,
D.
Bideau
,
A.
Gervois
,
J.
Messager
, and
J.
Troadec
, “
Uniaxial compression of 2d packings of cylinders. Effects of weak disorder
,”
Europhys. Lett.
4
,
329
(
1987
).
9.
F.
Radjai
,
M.
Jean
,
J.-J.
Moreau
, and
S.
Roux
, “
Force distributions in dense two-dimensional granular systems
,”
Phys. Rev. Lett.
77
,
274
277
(
1996
).
10.
H. M.
Jaeger
,
S. R.
Nagel
, and
R. P.
Behringer
, “
Granular solids, liquids, and gases
,”
Rev. Mod. Phys.
68
,
1259
(
1996
).
11.
E. T.
Owens
and
K. E.
Daniels
, “
Sound propagation and force chains in granular materials
,”
Europhys. Lett.
94
,
54005
(
2011
).
12.
V.
Tournat
and
V. E.
Gusev
, “
Nonlinear effects for coda-type elastic waves in stressed granular media
,”
Phys. Rev. E
80
,
011306
(
2009
).
13.
X.
Jia
,
T.
Brunet
, and
J.
Laurent
, “
Elastic weakening of a dense granular pack by acoustic fluidization: Slipping, compaction, and aging
,”
Phys. Rev. E
84
,
020301
(
2011
).
14.
L.
Trujillo
,
F.
Peniche
, and
X.
Jia
, “
Multiple scattering of elastic waves in granular media: Theory and experiments
,” in
Waves in Fluids and Solids
, edited by
R. P.
Vila
(
IntechOpen
,
Rijeka
,
2011
), Chap. 5.
15.
V.
Nesterenko
, “
Propagation of nonlinear compression pulses in granular media
,”
J. Appl. Mech. Tech. Phys.
24
,
733
743
(
1983
).
16.
C.
Daraio
,
V. F.
Nesterenko
,
E. B.
Herbold
, and
S.
Jin
, “
Strongly nonlinear waves in a chain of teflon beads
,”
Phys. Rev. E
72
,
016603
(
2005
).
17.
L. R.
Gómez
,
A. M.
Turner
,
M.
van Hecke
, and
V.
Vitelli
, “
Shocks near jamming
,”
Phys. Rev. Lett.
108
,
058001
(
2012
).
18.
S.
van den Wildenberg
,
R.
van Loo
, and
M.
van Hecke
, “
Shock waves in weakly compressed granular media
,”
Phys. Rev. Lett.
111
,
218003
(
2013
).
19.
F.
Santibanez
,
R.
Zuñiga
, and
F.
Melo
, “
Mechanical impulse propagation in a three-dimensional packing of spheres confined at constant pressure
,”
Phys. Rev. E
93
,
012908
(
2016
).
20.
X.
Zeng
,
J. H.
Agui
, and
M.
Nakagawa
, “
Wave velocities in granular materials under microgravity
,”
J. Aerosp. Eng.
20
,
116
123
(
2007
).
21.
S.
Aumaître
,
R.
Behringer
,
A.
Cazaubiel
,
E.
Clément
,
J.
Crassous
,
D.
Durian
,
E.
Falcon
,
S.
Fauve
,
D.
Fischer
,
A.
Garcimartín
 et al, “
An instrument for studying granular media in low-gravity environment
,”
Rev. Sci. Instrum.
89
,
075103
(
2018
).
22.
M.
Siegl
,
F.
Kargl
,
F.
Scheuerpflug
,
J.
Drescher
,
C.
Neumann
,
M.
Balter
,
M.
Kolbe
,
M.
Sperl
,
P.
Yu
, and
A.
Meyer
, “
Material physics rockets mapheus-3/4: Flights and developments
,” in
Proceedings of the 21st ESA Symposium on European Rocket and Balloon Programmes and Related Research
(
ESA
,
2013
), Vol. 9, p.
13
.
23.
S.
van den Wildenberg
,
M.
van Hecke
, and
X.
Jia
, “
Evolution of granular packings by nonlinear acoustic waves
,”
Europhys. Lett.
101
,
14004
(
2013
).
24.
V.
Langlois
and
X.
Jia
, “
Sound pulse broadening in stressed granular media
,”
Phys. Rev. E
91
,
022205
(
2015
).
You do not currently have access to this content.