To apply a laser ion source that generates a high-intensity pulsed beam to high-dose applications, such as ion implantation, a high repetition rate operation with a short pulse interval is required. However, when the pulse interval is shortened, there is a concern that a plasma, which is different from a single pulse plasma generation, may be formed due to the interaction between the preceding and following pulses. We investigated the time interval in which plasma pulses are generated without pulse-to-pulse interaction using a laser ion source with two lasers. In the experiment, a graphite target was irradiated by two laser beams (1064-nm wavelengths) with the same pulse widths (5.4 ns) and energies (15 mJ, 30 mJ, and 45 mJ) at different time intervals ranging from 1000 μs to 0 µs, and the time integrated value corresponding to the total charge amount was calculated from the measured time-of-flight signal of the generated carbon ion current. It was observed that the total charge did not change when the time interval was as low as approximately 100 µs, and the total charge rapidly decreased when the time interval was below approximately 100 µs. Thus, it was determined that the interaction occurs within a time interval of approximately 100 µs.

1.
T.
Kanesue
,
J.
Alessi
,
L.
DeSanto
,
M.
Costanzo
,
R.
Olsen
,
M.
Sekine
,
S.
Ikeda
,
D.
Raparia
,
A.
Pikin
, and
V.
LoDestro
, in
Proceedings of the 5th international particle accelerator conference (IPAC2014), Dresden, Germany
(
JACoW
,
Geneva
,
2014
) pp.
1890
1892
.
2.
S.
Kurashima
,
T.
Satoh
,
Y.
Saitoh
, and
W.
Yokota
,
Quantum Beam Sci.
1
(
1
),
2
(
2017
).
3.
H.
Kashiwagi
,
K.
Yamada
, and
S.
Kurashima
,
Nucl. Instrum. Methods Phys. Res., Sect. B
406
,
256
259
(
2017
).
4.
R.
Ahmed
and
M. A.
Baig
,
J. Appl. Phys.
106
(
3
),
033307
(
2009
).
5.
F.
Colao
,
V.
Lazic
,
R.
Fantoni
, and
S.
Pershin
,
Spectrochim. Acta, Part B
57
(
7
),
1167
1179
(
2002
).
6.
H.
Kashiwagi
and
K.
Yamada
,
AIP Conf. Proc.
2011
(
1
),
030012
(
2018
).
7.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
(
11
),
1818
1823
(
2010
).
You do not currently have access to this content.