We present a high energy resolution x-ray spectrometer for the tender x-ray regime (1.6–5.0 keV) that was designed and operated at Stanford Synchrotron Radiation Lightsource. The instrument is developed on a Rowland geometry (500 mm of radius) using cylindrically bent Johansson analyzers and a position sensitive detector. By placing the sample inside the Rowland circle, the spectrometer operates in an energy-dispersive mode with a subnatural line-width energy resolution (∼0.32 eV at 2400 eV), even when an extended incident x-ray beam is used across a wide range of diffraction angles (∼30° to 65°). The spectrometer is enclosed in a vacuum chamber, and a sample chamber with independent ambient conditions is introduced to enable a versatile and fast-access sample environment (e.g., solid/gas/liquid samples, in situ cells, and radioactive materials). The design, capabilities, and performance are presented and discussed.

1.
A.
Kotani
and
S.
Shin
, “
Resonant inelastic x-ray scattering spectra for electrons in solids
,”
Rev. Mod. Phys.
73
,
203
246
(
2001
).
2.
L. J. P.
Ament
,
M.
van Veenendaal
,
T. P.
Devereaux
,
J. P.
Hill
, and
J.
van den Brink
, “
Resonant inelastic x-ray scattering studies of elementary excitations
,”
Rev. Mod. Phys.
83
,
705
767
(
2011
).
3.
P.
Glatzel
and
U.
Bergmann
, “
High resolution 1s core hole x-ray spectroscopy in 3d transition metal complexes—Electronic and structural information
,”
Coord. Chem. Rev.
249
,
65
95
(
2005
), part of special issue on Synchrotron Radiation in Inorganic and Bioinorganic Chemistry.
4.
U.
Bergmann
and
P.
Glatzel
, “
X-ray emission spectroscopy
,”
Photosynth. Res.
102
,
255
(
2009
).
5.
D.
Friebel
,
M. W.
Louie
,
M.
Bajdich
,
K. E.
Sanwald
,
Y.
Cai
,
A. M.
Wise
,
M.-J.
Cheng
,
D.
Sokaras
,
T.-C.
Weng
,
R.
Alonso-Mori
,
R. C.
Davis
,
J. R.
Bargar
,
J. K.
Norskov
,
A.
Nilsson
, and
A. T.
Bell
, “
Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting
,”
J. Am. Chem. Soc.
137
,
1305
1313
(
2015
).
6.
C.
Kuai
,
Y.
Zhang
,
D.
Wu
,
D.
Sokaras
,
L.
Mu
,
S.
Spence
,
D.
Nordlund
,
F.
Lin
, and
X.-W.
Du
, “
Fully oxidized Ni–Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction
,”
ACS Catal.
9
,
6027
6032
(
2019
).
7.
S.
Sainio
,
N.
Wester
,
C. J.
Titus
,
Y.
Liao
,
Q.
Zhang
,
D.
Nordlund
,
D.
Sokaras
,
S.-j.
Lee
,
K. D.
Irwin
,
W. B.
Doriese
,
G. C.
O’Neil
,
D. S.
Swetz
,
J. N.
Ullom
,
E. I.
Kauppinen
,
T.
Laurila
, and
J.
Koskinen
, “
Hybrid x-ray spectroscopy-based approach to acquire chemical and structural information of single-walled carbon nanotubes with superior sensitivity
,”
J. Phys. Chem. C
123
,
6114
6120
(
2019
).
8.
Y.
Lu
,
J.
Wang
,
L.
Yu
,
L.
Kovarik
,
X.
Zhang
,
A. S.
Hoffman
,
A.
Gallo
,
S. R.
Bare
,
D.
Sokaras
,
T.
Kroll
 et al, “
Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts
,”
Nat. Catal.
2
,
149
(
2019
).
9.
L.
Li
,
J.
Yang
,
H.
Ali-Loytty
,
T.-C.
Weng
,
F. M.
Toma
,
D.
Sokaras
,
I. D.
Sharp
, and
A.
Nilsson
, “
Operando observation of chemical transformations of iridium oxide during photoelectrochemical water oxidation
,”
ACS Appl. Energy Mater.
2
,
1371
1379
(
2019
).
10.
L. R.
Merte
,
F.
Behafarid
,
D. J.
Miller
,
D.
Friebel
,
S.
Cho
,
F.
Mbuga
,
D.
Sokaras
,
R.
Alonso-Mori
,
T.-C.
Weng
,
D.
Nordlund
,
A.
Nilsson
, and
B.
Roldan Cuenya
, “
Electrochemical oxidation of size-selected Pt nanoparticles studied using in situ high-energy-resolution x-ray absorption spectroscopy
,”
ACS Catal.
2
,
2371
2376
(
2012
).
11.
J. J.
Willis
,
A.
Gallo
,
D.
Sokaras
,
H.
Aljama
,
S. H.
Nowak
,
E. D.
Goodman
,
L.
Wu
,
C. J.
Tassone
,
T. F.
Jaramillo
,
F.
Abild-Pedersen
 et al, “
Systematic structure–property relationship studies in palladium-catalyzed methane complete combustion
,”
ACS Catal.
7
,
7810
7821
(
2017
).
12.
A. T.
Garcia-Esparza
,
T.
Shinagawa
,
S.
Ould-Chikh
,
M.
Qureshi
,
X.
Peng
,
N.
Wei
,
D. H.
Anjum
,
A.
Clo
,
T.-C.
Weng
,
D.
Nordlund
 et al, “
An oxygen-insensitive hydrogen evolution catalyst coated by a molybdenum-based layer for overall water splitting
,”
Angew. Chem., Int. Ed.
56
,
5780
5784
(
2017
).
13.
U.
Bergmann
,
P.
Glatzel
, and
S. P.
Cramer
, “
Bulk-sensitive XAS characterization of light elements: From x-ray Raman scattering to x-ray Raman spectroscopy
,”
Microchem. J.
71
,
221
230
(
2002
), part of special issue on X-RAY ABSORPTION SPECTROSCOPY.
14.
U.
Bergmann
,
M. M.
Grush
,
C. R.
Horne
,
P.
DeMarois
,
J. E.
Penner-Hahn
,
C. F.
Yocum
,
D. W.
Wright
,
C. E.
Dubé
,
W. H.
Armstrong
,
G.
Christou
,
H. J.
Eppley
, and
S. P.
Cramer
, “
Characterization of the Mn oxidation states in photosystem II by Kβ x-ray fluorescence spectroscopy
,”
J. Phys. Chem. B
102
,
8350
8352
(
1998
).
15.
U.
Bergmann
,
C.
Horne
,
T.
Collins
,
J.
Workman
, and
S.
Cramer
, “
Chemical dependence of interatomic x-ray transition energies and intensities—A study of Mn Kβ″ and Kβ2,5 spectra
,”
Chem. Phys. Lett.
302
,
119
124
(
1999
).
16.
K. M.
Lancaster
,
M.
Roemelt
,
P.
Ettenhuber
,
Y.
Hu
,
M. W.
Ribbe
,
F.
Neese
,
U.
Bergmann
, and
S.
DeBeer
, “
X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor
,”
Science
334
,
974
977
(
2011
).
17.
R.
Alonso Mori
,
E.
Paris
,
G.
Giuli
,
S. G.
Eeckhout
,
M.
Kavčič
,
M.
Žitnik
,
K.
Bučar
,
L. G. M.
Pettersson
, and
P.
Glatzel
, “
Electronic structure of sulfur studied by x-ray absorption and emission spectroscopy
,”
Anal. Chem.
81
,
6516
6525
(
2009
).
18.
R. A.
Mori
,
E.
Paris
,
G.
Giuli
,
S. G.
Eeckhout
,
M.
Kavčič
,
M.
Žitnik
,
K.
Bučar
,
L. G. M.
Pettersson
, and
P.
Glatzel
, “
Sulfur-metal orbital hybridization in sulfur-bearing compounds studied by x-ray emission spectroscopy
,”
Inorg. Chem.
49
,
6468
6473
(
2010
).
19.
P.
Glatzel
,
J.
Singh
,
K. O.
Kvashnina
, and
J. A.
van Bokhoven
, “
In situ characterization of the 5d density of states of Pt nanoparticles upon adsorption of CO
,”
J. Am. Chem. Soc.
132
,
2555
2557
(
2010
).
20.
T.
Fransson
,
R.
Chatterjee
,
F. D.
Fuller
,
S.
Gul
,
C.
Weninger
,
D.
Sokaras
,
T.
Kroll
,
R.
Alonso-Mori
,
U.
Bergmann
,
J.
Kern
 et al, “
X-ray emission spectroscopy as an in situ diagnostic tool for x-ray crystallography of metalloproteins using an x-ray free-electron laser
,”
Biochemistry
57
,
4629
4637
(
2018
).
21.
M. W.
Mara
,
R. G.
Hadt
,
M. E.
Reinhard
,
T.
Kroll
,
H.
Lim
,
R. W.
Hartsock
,
R.
Alonso-Mori
,
M.
Chollet
,
J. M.
Glownia
,
S.
Nelson
 et al, “
Metalloprotein entatic control of ligand-metal bonds quantified by ultrafast x-ray spectroscopy
,”
Science
356
,
1276
1280
(
2017
).
22.
V.
Martin-Diaconescu
,
K. N.
Chacón
,
M. U.
Delgado-Jaime
,
D.
Sokaras
,
T.-C.
Weng
,
S.
DeBeer
, and
N. J.
Blackburn
, “
Kβ valence to core x-ray emission studies of Cu(i) binding proteins with mixed methionine–histidine coordination. Relevance to the reactivity of the M- and H-sites of peptidylglycine monooxygenase
,”
Inorg. Chem.
55
,
3431
3439
(
2016
).
23.
P.
Emma
,
R.
Akre
,
J.
Arthur
,
R.
Bionta
,
C.
Bostedt
,
J.
Bozek
,
A.
Brachmann
,
P.
Bucksbaum
,
R.
Coffee
,
F.-J.
Decker
 et al, “
First lasing and operation of an ångstrom-wavelength free-electron laser
,”
Nat. Photonics
4
,
641
(
2010
).
24.
D.
Pile
, “
X-rays: First light from SACLA
,”
Nat. Photonics
5
,
456
(
2011
).
25.
M.
Altarelli
,
R.
Brinkmann
,
M.
Chergui
,
W.
Decking
,
B.
Dobson
,
S.
Düsterer
,
G.
Grübel
,
W.
Graeff
,
H.
Graafsma
,
J.
Hajdu
 et al, “
The European x-ray free-electron laser
,” in
Technical Design Report
, DESY 97 (
2006
), pp.
1
26
, see https://bib-pubdb1.desy.de/record/77248/files/european-xfel-tdr.pdf.
26.
R.
Alonso-Mori
,
J.
Kern
,
R. J.
Gildea
,
D.
Sokaras
,
T.-C.
Weng
,
B.
Lassalle-Kaiser
,
R.
Tran
,
J.
Hattne
,
H.
Laksmono
,
J.
Hellmich
 et al, “
Energy-dispersive x-ray emission spectroscopy using an x-ray free-electron laser in a shot-by-shot mode
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
19103
19107
(
2012
).
27.
R.
Alonso-Mori
,
D.
Sokaras
,
D.
Zhu
,
T.
Kroll
,
M.
Chollet
,
Y.
Feng
,
J. M.
Glownia
,
J.
Kern
,
H. T.
Lemke
,
D.
Nordlund
 et al, “
Photon-in photon-out hard x-ray spectroscopy at the LINAC Coherent Light Source
,”
J. Synchrotron Radiat.
22
,
612
620
(
2015
).
28.
W.
Zhang
,
R.
Alonso-Mori
,
U.
Bergmann
,
C.
Bressler
,
M.
Chollet
,
A.
Galler
,
W.
Gawelda
,
R. G.
Hadt
,
R. W.
Hartsock
,
T.
Kroll
 et al, “
Tracking excited-state charge and spin dynamics in iron coordination complexes
,”
Nature
509
,
345
(
2014
).
29.
K. S.
Kjær
,
W.
Zhang
,
R.
Alonso-Mori
,
U.
Bergmann
,
M.
Chollet
,
R. G.
Hadt
,
R. W.
Hartsock
,
T.
Harlang
,
T.
Kroll
,
K.
Kubiček
 et al, “
Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine)2(CN)2]
,”
Struct. Dyn.
4
,
044030
(
2017
).
30.
W.
Zhang
,
K. S.
Kjær
,
R.
Alonso-Mori
,
U.
Bergmann
,
M.
Chollet
,
L. A.
Fredin
,
R. G.
Hadt
,
R. W.
Hartsock
,
T.
Harlang
,
T.
Kroll
 et al, “
Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution
,”
Chem. Sci.
8
,
515
523
(
2017
).
31.
J.
Kern
,
R.
Tran
,
R.
Alonso-Mori
,
S.
Koroidov
,
N.
Echols
,
J.
Hattne
,
M.
Ibrahim
,
S.
Gul
,
H.
Laksmono
,
R. G.
Sierra
 et al, “
Taking snapshots of photosynthetic water oxidation using femtosecond x-ray diffraction and spectroscopy
,”
Nat. Commun.
5
,
4371
(
2014
).
32.
J.
Nordgren
,
G.
Bray
,
S.
Cramm
,
R.
Nyholm
,
J.-E.
Rubensson
, and
N.
Wassdahl
, “
Soft x-ray emission spectroscopy using monochromatized synchrotron radiation
,”
Rev. Sci. Instrum.
60
,
1690
1696
(
1989
).
33.
K.
Kunnus
,
I.
Rajkovic
,
S.
Schreck
,
W.
Quevedo
,
S.
Eckert
,
M.
Beye
,
E.
Suljoti
,
C.
Weniger
,
C.
Kalus
,
S.
Grübel
 et al, “
A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources
,”
Rev. Sci. Instrum.
83
,
123109
(
2012
).
34.
Y.-D.
Chuang
,
J.
Pepper
,
W.
McKinney
,
Z.
Hussain
,
E.
Gullikson
,
P.
Batson
,
D.
Qian
, and
M. Z.
Hasan
, “
High-resolution soft x-ray emission spectrograph at advanced light source
,”
J. Phys. Chem. Solids
66
,
2173
2178
(
2005
).
35.
R.
Qiao
,
Q.
Li
,
Z.
Zhuo
,
S.
Sallis
,
O.
Fuchs
,
M.
Blum
,
L.
Weinhardt
,
C.
Heske
,
J.
Pepper
,
M.
Jones
 et al, “
High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the advanced light source
,”
Rev. Sci. Instrum.
88
,
033106
(
2017
).
36.
Z.
Yin
,
J.
Rehanek
,
H.
Löchel
,
C.
Braig
,
J.
Buck
,
A.
Firsov
,
J.
Viefhaus
,
A.
Erko
, and
S.
Techert
, “
Highly efficient soft x-ray spectrometer based on a reflection zone plate for resonant inelastic x-ray scattering measurements
,”
Opt. Express
25
,
10984
10996
(
2017
).
37.
T.
Jach
,
J.
Terrence
,
R.
Nicholas
,
U.
Joel
, and
J. A.
Beall
, “
Quantitative analysis with the transition edge sensor microcalorimeter x-ray detector
,”
Powder Diffr.
22
,
138
141
(
2007
).
38.
H.
Tatsuno
,
W. B.
Doriese
,
D. A.
Bennett
,
C.
Curceanu
,
J. W.
Fowler
,
J.
Gard
,
F. P.
Gustafsson
,
T.
Hashimoto
,
R. S.
Hayano
,
J. P.
Hays-Wehle
 et al, “
Absolute energy calibration of x-ray TESs with 0.04 eV uncertainty at 6.4 keV in a Hadron-Beam environment
,”
J. Low Temp. Phys.
184
,
930
937
(
2016
).
39.
C. J.
Titus
,
M. L.
Baker
,
S. J.
Lee
,
H.-M.
Cho
,
W. B.
Doriese
,
J. W.
Fowler
,
K.
Gaffney
,
J. D.
Gard
,
G. C.
Hilton
,
C.
Kenney
 et al, “
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
,”
J. Chem. Phys.
147
,
214201
(
2017
).
40.
H. H.
Johann
, “
Die erzeugung lichtstarker Röntgenspektren mit Hilfe von Konkavkristallen
,”
Z. Phys.
69
,
185
206
(
1931
).
41.
L. v.
Hámos
, “
Röntgenspektroskopie und abbildung mittels gekrümmter kristallreflektoren
,”
Naturwissenschaften
20
,
705
706
(
1932
).
42.
R.
Alonso-Mori
,
J.
Kern
,
D.
Sokaras
,
T.-C.
Weng
,
D.
Nordlund
,
R.
Tran
,
P.
Montanez
,
J.
Delor
,
V. K.
Yachandra
,
J.
Yano
 et al, “
A multi-crystal wavelength dispersive x-ray spectrometer
,”
Rev. Sci. Instrum.
83
,
073114
(
2012
).
43.
D.
Sokaras
,
T.-C.
Weng
,
D.
Nordlund
,
R.
Alonso-Mori
,
P.
Velikov
,
D.
Wenger
,
A.
Garachtchenko
,
M.
George
,
V.
Borzenets
,
B.
Johnson
,
T.
Rabedeau
, and
U.
Bergmann
, “
A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource
,”
Rev. Sci. Instrum.
84
,
053102
(
2013
).
44.
D.
Sokaras
,
D.
Nordlund
,
T.-C.
Weng
,
R. A.
Mori
,
P.
Velikov
,
D.
Wenger
,
A.
Garachtchenko
,
M.
George
,
V.
Borzenets
,
B.
Johnson
 et al, “
A high resolution and large solid angle x-ray Raman spectroscopy end-station at the Stanford Synchrotron Radiation Lightsource
,”
Rev. Sci. Instrum.
83
,
043112
(
2012
).
45.
E.
Kleymenov
,
J. A.
van Bokhoven
,
C.
David
,
P.
Glatzel
,
M.
Janousch
,
R.
Alonso-Mori
,
M.
Studer
,
M.
Willimann
,
A.
Bergamaschi
,
B.
Henrich
 et al, “
Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector
,”
Rev. Sci. Instrum.
82
,
065107
(
2011
).
46.
J.
Ablett
,
D.
Prieur
,
D.
Céolin
,
B.
Lassalle-Kaiser
,
B.
Lebert
,
M.
Sauvage
,
T.
Moreno
,
S.
Bac
,
V.
Balédent
,
A.
Ovono
 et al, “
The galaxies inelastic hard x-ray scattering end-station at synchrotron soleil
,”
J. Synchrotron Radiat.
26
,
263
271
(
2019
).
47.
M.
Moretti Sala
,
K.
Martel
,
C.
Henriquet
,
A.
Al Zein
,
L.
Simonelli
,
C.
Sahle
,
H.
Gonzalez
,
M.-C.
Lagier
,
C.
Ponchut
,
S.
Huotari
 et al, “
A high-energy-resolution resonant inelastic x-ray scattering spectrometer at ID20 of the European Synchrotron Radiation Facility
,”
J. Synchrotron Radiat.
25
,
580
591
(
2018
).
48.
U.
Bergmann
and
S. P.
Cramer
, “
High-resolution large-acceptance analyzer for x-ray fluorescence and Raman spectroscopy
,” in
Crystal and Multilayer Optics
(
International Society for Optics and Photonics
,
1998
), Vol. 3448, pp.
198
210
.
49.
B.
Abraham
,
S.
Nowak
,
C.
Weninger
,
R.
Armenta
,
J.
Defever
,
D.
Day
,
G.
Carini
,
K.
Nakahara
,
A.
Gallo
,
S.
Nelson
,
D.
Nordlund
,
T.
Kroll
,
M. S.
Hunter
,
T.
van Driel
,
D.
Zhu
,
T.-C.
Weng
,
R.
Alonso-Mori
, and
D.
Sokaras
, “
A high-throughput energy-dispersive tender X-ray spectrometer for shot-to-shot sulfur measurements
,”
J. Synchrotron Radiat.
26
,
629
634
(
2019
).
50.
E.
Welter
,
P.
Machek
,
G.
Dräger
,
U.
Brüggmann
, and
M.
Fröba
, “
A new x-ray spectrometer with large focusing crystal analyzer
,”
J. Synchrotron Radiat.
12
,
448
454
(
2005
).
51.
A.
Hudson
,
W. C.
Stolte
,
D. W.
Lindle
, and
R.
Guillemin
, “
Design and performance of a curved-crystal x-ray emission spectrometer
,”
Rev. Sci. Instrum.
78
,
053101
(
2007
).
52.
L.
Journel
,
L.
El Khoury
,
T.
Marin
,
R.
Guillemin
,
S.
Carniato
,
A.
Avila
,
R.
Delaunay
,
C. F.
Hague
, and
M.
Simon
, “
Performances of a bent-crystal spectrometer adapted to resonant x-ray emission measurements on gas-phase samples
,”
Rev. Sci. Instrum.
80
,
093105
(
2009
).
53.
T.
Johansson
, “
Über ein neuartiges, genau fokussierendes röntgenspektrometer
,”
Z. Phys.
82
,
507
528
(
1933
).
54.
M.
Kavčič
,
M.
Budnar
,
A.
Mühleisen
,
F.
Gasser
,
M.
Žitnik
,
K.
Bučar
, and
R.
Bohinc
, “
Design and performance of a versatile curved-crystal spectrometer for high-resolution spectroscopy in the tender x-ray range
,”
Rev. Sci. Instrum.
83
,
033113
(
2012
).
55.
F. P.
Romano
,
C.
Caliri
,
P.
Nicotra
,
S.
Di Martino
,
L.
Pappalardo
,
F.
Rizzo
, and
H. C.
Santos
, “
Real-time elemental imaging of large dimension paintings with a novel mobile macro x-ray fluorescence (MA-XRF) scanning technique
,”
J. Anal. At. Spectrom.
32
,
773
781
(
2017
).
56.
F. P.
Romano
,
C.
Caliri
,
L.
Cosentino
,
S.
Gammino
,
D.
Mascali
,
L.
Pappalardo
,
F.
Rizzo
,
O.
Scharf
, and
H. C.
Santos
, “
Micro x-ray fluorescence imaging in a tabletop full field-x-ray fluorescence instrument and in a full field-particle induced x-ray emission end station
,”
Anal. Chem.
88
,
9873
9880
(
2016
).
57.
E.
Miyata
,
M.
Miki
,
D.
Kamiyama
,
H.
Tsunemi
, and
K.
Miyaguchi
, “
Measurement of the charge cloud shape generated in the fully depleted back-illuminated charge-coupled device
,”
Jpn. J. Appl. Phys.
42
,
7135
7139
(
2003
), single size component in fully depleted cloud.
58.
S. H.
Nowak
,
A.
Bjeoumikhov
,
J.
von Borany
,
J.
Buchriegler
,
F.
Munnik
,
M.
Petric
,
M.
Radtke
,
A. D.
Renno
,
U.
Reinholz
,
O.
Scharf
 et al, “
Sub-pixel resolution with a color x-ray camera
,”
J. Anal. At. Spectrom.
30
,
1890
1897
(
2015
).
59.
J.
Als-Nielsen
and
D.
McMorrow
,
Elements of Modern X-Ray Physics
(
John Wiley & Sons
,
2011
).
60.
A.
Gallo
, “
A fixed-bed reactor for operando tender x-ray spectroscopy studies
” (unpublished).
61.
T.-V.
Nguyen
,
J. C.
Wu
, and
C.-H.
Chiou
, “
Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight
,”
Catal. Commun.
9
,
2073
2076
(
2008
).
62.
K.
Maeda
,
G.
Sahara
,
M.
Eguchi
, and
O.
Ishitani
, “
Hybrids of a ruthenium(II) polypyridyl complex and a metal oxide nanosheet for dye-sensitized hydrogen evolution with visible light: Effects of the energy structure on photocatalytic activity
,”
Acs Catal.
5
,
1700
1707
(
2015
).
63.
X.
Zhang
,
G.
Smolentsev
,
J.
Guo
,
K.
Attenkofer
,
C.
Kurtz
,
G.
Jennings
,
J. V.
Lockard
,
A. B.
Stickrath
, and
L. X.
Chen
, “
Visualizing interfacial charge transfer in Ru-dye-sensitized TiO2 nanoparticles using x-ray transient absorption spectroscopy
,”
J. Phys. Chem. Lett.
2
,
628
632
(
2011
).
64.
W.
Gawelda
,
M.
Johnson
,
F. M.
de Groot
,
R.
Abela
,
C.
Bressler
, and
M.
Chergui
, “
Electronic and molecular structure of photoexcited [RuII(bpy)3]2+ probed by picosecond x-ray absorption spectroscopy
,”
J. Am. Chem. Soc.
128
,
5001
5009
(
2006
).
65.
J.
Vinson
,
J.
Rehr
,
J.
Kas
, and
E.
Shirley
, “
Bethe-Salpeter equation calculations of core excitation spectra
,”
Phys. Rev. B
83
,
115106
(
2011
).
66.
F.
Neese
, “
The orca program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
67.
C.
Booth
,
Y.
Jiang
,
D.
Wang
,
J.
Mitchell
,
P.
Tobash
,
E.
Bauer
,
M.
Wall
,
P.
Allen
,
D.
Sokaras
,
D.
Nordlund
 et al, “
Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
10205
10209
(
2012
).
68.
C. H.
Booth
,
S.
Medling
,
Y.
Jiang
,
E.
Bauer
,
P.
Tobash
,
J.
Mitchell
,
D.
Veirs
,
M.
Wall
,
P.
Allen
,
J.
Kas
 et al, “
Delocalization and occupancy effects of 5f orbitals in plutonium intermetallics using l3-edge resonant x-ray emission spectroscopy
,”
J. Electron Spectrosc. Relat. Phenom.
194
,
57
65
(
2014
).
69.
J.
Tobin
,
S.
Nowak
,
C.
Booth
,
E.
Bauer
,
S.-W.
Yu
,
R.
Alonso-Mori
,
T.
Kroll
,
D.
Nordlund
,
T.-C.
Weng
, and
D.
Sokaras
, “
Separate measurement of the 5f5/2 and 5f7/2 unoccupied density of states of UO2
,”
J. Electron Spectrosc. Relat. Phenom.
232
,
100
104
(
2019
).
70.
K. O.
Kvashnina
,
S. M.
Butorin
,
P.
Martin
, and
P.
Glatzel
, “
Chemical state of complex uranium oxides
,”
Phys. Rev. Lett.
111
,
253002
(
2013
).
71.
T.
Vitova
,
I.
Pidchenko
,
D.
Fellhauer
,
P.
Bagus
,
Y.
Joly
,
T.
Pruessmann
,
S.
Bahl
,
E.
Gonzalez-Robles
,
J.
Rothe
,
M.
Altmaier
 et al, “
The role of the 5f valence orbitals of early actinides in chemical bonding
,”
Nat. Commun.
8
,
16053
(
2017
).
72.
R. W.
Schoenlein
, “
New science opportunities enabled by LCLS-II x-ray lasers
,” Technical Report No. SLAC-R-1053,
SLAC
,
2015
.
73.
C. J.
Milne
,
P.
Beaud
,
Y.
Deng
,
C.
Erny
,
R.
Follath
,
U.
Flechsig
,
C. P.
Hauri
,
G.
Ingold
,
P.
Juranic
,
G.
Knopp
,
H.
Lemke
,
B.
Pedrini
,
P.
Radi
, and
L.
Patthey
, “
Opportunities for chemistry at the SwissFEL X-ray Free Electron Laser
,”
Chimia
71
,
299
307
(
2017
).
You do not currently have access to this content.