A high-throughput, automated screening platform has been developed for the assessment of biological membrane damage caused by nanomaterials. Membrane damage is detected using the technique of analyzing capacitance–current peak changes obtained through rapid cyclic voltammetry measurements of a phospholipid self-assembled monolayer formed on a mercury film deposited onto a microfabricated platinum electrode after the interaction of a biomembrane-active species. To significantly improve wider usability of the screening technique, a compact, high-throughput screening platform was designed, integrating the monolayer-supporting microfabricated electrode into a microfluidic flow cell, with bespoke pumps used for precise, automated control of fluid flow. Chlorpromazine, a tricyclic antidepressant, and a citrate-coated 50 nm diameter gold nanomaterial (AuNM) were screened to successfully demonstrate the platform’s viability for high-throughput screening. Chlorpromazine and the AuNM showed interactions with a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) monolayer at concentrations in excess of 1 µmol dm−3. Biological validity of the electrochemically measured interaction of chlorpromazine with DOPC monolayers was confirmed through quantitative comparisons with HepG2 and A549 cytotoxicity assays. The platform also demonstrated desirable performance for high-throughput screening, with membrane interactions detected in <6 min per assay. Automation contributed to this significantly by reducing the required operating skill level when using the technique and minimizing fluid consumption.

1.
R.
Damoiseaux
,
S.
George
,
M.
Li
,
S.
Pokhrel
,
Z.
Ji
,
B.
France
,
T.
Xia
,
E.
Suarez
,
R.
Rallo
, and
L.
Mädler
, “
No time to lose—high throughput screening to assess nanomaterial safety
,”
Nanoscale
3
(
4
),
1345
1360
(
2011
).
2.
M.
De
,
P. S.
Ghosh
, and
V. M.
Rotello
, “
Applications of nanoparticles in biology
,”
Adv. Mater.
20
(
22
),
4225
4241
(
2008
).
3.
M.
Mortimer
,
K.
Kasemets
,
M.
Heinlaan
,
I.
Kurvet
, and
A.
Kahru
, “
High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles
,”
Toxicol. Vitro
22
(
5
),
1412
1417
(
2008
).
4.
O. V.
Salata
, “
Applications of nanoparticles in biology and medicine
,”
J. Nanobiotechnol.
2
(
1
),
3
(
2004
).
5.
A.
Vakurov
,
G.
Mokry
,
R.
Drummond-Brydson
,
R.
Wallace
,
C.
Svendsen
, and
A.
Nelson
, “
ZnO nanoparticle interactions with phospholipid monolayers
,”
J. Colloid Interface Sci.
404
,
161
168
(
2013
).
6.
W.-T.
Liu
, “
Nanoparticles and their biological and environmental applications
,”
J. Biosci. Bioeng.
102
(
1
),
1
7
(
2006
).
7.
A.
Vakurov
,
R.
Drummond-Brydson
,
O.
Ugwumsinachi
, and
A.
Nelson
, “
Significance of particle size and charge capacity in TiO2 nanoparticle-lipid interactions
,”
J. Colloid Interface Sci.
473
,
75
83
(
2016
).
8.
I.
Hansjosten
,
J.
Rapp
,
L.
Reiner
,
R.
Vatter
,
S.
Fritsch-Decker
,
R.
Peravali
,
T.
Palosaari
,
E.
Joossens
,
K.
Gerloff
,
P.
Macko
,
M.
Whelan
,
D.
Gilliland
,
I.
Ojea-Jimenez
,
M. P.
Monopoli
,
L.
Rocks
,
D.
Garry
,
K.
Dawson
,
P. J. F.
Röttgermann
,
A.
Murschhauser
,
J. O.
Rädler
,
S. V. Y.
Tang
,
P.
Gooden
,
M.-F. A.
Belinga-Desaunay
,
A. O.
Khan
,
S.
Briffa
,
E.
Guggenheim
,
A.
Papadiamantis
,
I.
Lynch
,
E.
Valsami-Jones
,
S.
Diabaté
, and
C.
Weiss
, “
Microscopy-based high-throughput assays enable multi-parametric analysis to assess adverse effects of nanomaterials in various cell lines
,”
Arch. Toxicol.
92
(
2
),
633
649
(
2018
).
9.
A. R.
Gliga
,
S.
Skoglund
,
I. O.
Wallinder
,
B.
Fadeel
, and
H. L.
Karlsson
, “
Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release
,”
Part. Fibre Toxicol.
11
(
1
),
11
(
2014
).
10.
A.
Vakurov
,
R.
Brydson
, and
A.
Nelson
, “
Electrochemical modeling of the silica nanoparticle–biomembrane interaction
,”
Langmuir
28
(
2
),
1246
1255
(
2011
).
11.
N.
Lewinski
,
V.
Colvin
, and
R.
Drezek
, “
Cytotoxicity of nanoparticles
,”
Small
4
(
1
),
26
49
(
2008
).
12.
C.
Lopez-Chaves
,
J.
Soto-Alvaredo
,
M.
Montes-Bayon
,
J.
Bettmer
,
J.
Llopis
, and
C.
Sanchez-Gonzalez
, “
Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies
,”
Nanomed.: Nanotechnol., Biol. Med.
14
(
1
),
1
12
(
2018
).
13.
A.
Nel
,
T.
Xia
,
H.
Meng
,
X.
Wang
,
S.
Lin
,
Z.
Ji
, and
H.
Zhang
, “
Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening
,”
Acc. Chem. Res.
46
(
3
),
607
621
(
2012
).
14.
S.
George
,
T.
Xia
,
R.
Rallo
,
Y.
Zhao
,
Z.
Ji
,
S.
Lin
,
X.
Wang
,
H.
Zhang
,
B.
France
, and
D.
Schoenfeld
, “
Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials
,”
ACS Nano
5
(
3
),
1805
1817
(
2011
).
15.
A.
Astashkina
,
B.
Mann
, and
D. W.
Grainger
, “
A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity
,”
Pharmacol. Ther.
134
(
1
),
82
106
(
2012
).
16.
S. K.
Mahto
,
V.
Charwat
,
P.
Ertl
,
B.
Rothen-Rutishauser
,
S. W.
Rhee
, and
J.
Sznitman
, “
Microfluidic platforms for advanced risk assessments of nanomaterials
,”
Nanotoxicology
9
(
3
),
381
395
(
2015
).
17.
A.
Verma
and
F.
Stellacci
, “
Effect of surface properties on nanoparticle–cell interactions
,”
Small
6
(
1
),
12
21
(
2010
).
18.
A. H.
Churchman
,
R.
Wallace
,
S. J.
Milne
,
A. P.
Brown
,
R.
Brydson
, and
P. A.
Beales
, “
Serum albumin enhances the membrane activity of ZnO nanoparticles
,”
Chem. Commun.
49
(
39
),
4172
4174
(
2013
).
19.
P. R.
Leroueil
,
S.
Hong
,
A.
Mecke
,
J. R.
Baker
, Jr.
,
B. G.
Orr
, and
M. M.
Banaszak Holl
, “
Nanoparticle interaction with biological membranes: Does nanotechnology present a Janus face?
,”
Acc. Chem. Res.
40
(
5
),
335
342
(
2007
).
20.
Q.
Mu
,
C. A.
David
,
J.
Galceran
,
C.
Rey-Castro
,
Ł.
Krzemiński
,
R.
Wallace
,
F.
Bamiduro
,
S. J.
Milne
,
N. S.
Hondow
, and
R.
Brydson
, “
Systematic investigation of the physicochemical factors that contribute to the toxicity of ZnO nanoparticles
,”
Chem. Res. Toxicol.
27
(
4
),
558
567
(
2014
).
21.
S.
Zhang
,
A.
Nelson
, and
P. A.
Beales
, “
Freezing or wrapping: The role of particle size in the mechanism of nanoparticle–biomembrane interaction
,”
Langmuir
28
(
35
),
12831
12837
(
2012
).
22.
C. F.
Jones
and
D. W.
Grainger
, “
In vitro assessments of nanomaterial toxicity
,”
Adv. Drug Delivery Rev.
61
(
6
),
438
456
(
2009
).
23.
S.
George
,
S.
Pokhrel
,
T.
Xia
,
B.
Gilbert
,
Z.
Ji
,
M.
Schowalter
,
A.
Rosenauer
,
R.
Damoiseaux
,
K. A.
Bradley
, and
L.
Mädler
, “
Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping
,”
ACS Nano
4
(
1
),
15
29
(
2009
).
24.
A. R.
Collins
,
B.
Annangi
,
L.
Rubio
,
R.
Marcos
,
M.
Dorn
,
C.
Merker
,
I.
Estrela-Lopis
,
M. R.
Cimpan
,
M.
Ibrahim
, and
E.
Cimpan
, “
High throughput toxicity screening and intracellular detection of nanomaterials
,”
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
9
(
1
),
e1413
(
2017
).
25.
Z.
Coldrick
,
A.
Penezić
,
B.
Gašparović
,
P.
Steenson
,
J.
Merrifield
, and
A.
Nelson
, “
High throughput systems for screening biomembrane interactions on fabricated mercury film electrodes
,”
J. Appl. Electrochem.
41
(
8
),
939
949
(
2011
).
26.
Z.
Coldrick
,
P.
Steenson
,
P.
Millner
,
M.
Davies
, and
A.
Nelson
, “
Phospholipid monolayer coated microfabricated electrodes to model the interaction of molecules with biomembranes
,”
Electrochim. Acta
54
(
22
),
4954
4962
(
2009
).
27.
I.
Miller
,
J.
Rishpon
, and
A.
Tenenbaum
, “
Electrochemical determination of structure and interactions in spread lipid monolayers
,”
Bioelectrochem. Bioenerg.
3
(
3-4
),
528
542
(
1976
).
28.
A.
Nelson
, “
Penetration of mercury-adsorbed phospholipid monolayers by polynuclear aromatic hydrocarbons
,”
Anal. Chim. Acta
194
,
139
149
(
1987
).
29.
A.
Nelson
,
N.
Auffret
, and
J.
Borlakoglu
, “
Interaction of hydrophobic organic compounds with mercury adsorbed dioleoylphosphatidylcholine monolayers
,”
Biochim. Biophys. Acta, Biomembr.
1021
(
2
),
205
216
(
1990
).
30.
A.
Nelson
,
N.
Auffret
, and
J.
Readman
, “
Initial applications of phospholipid-coated mercury electrodes to the determination of polynuclear aromatic hydrocarbons and other organic micropollutants in aqueous systems
,”
Anal. Chim. Acta
207
,
47
57
(
1988
).
31.
A.
Nelson
and
A.
Benton
, “
Phospholipid monolayers at the mercury/water interface
,”
J. Electroanal. Chem. Interfacial Electrochem.
202
(
1-2
),
253
270
(
1986
).
32.
A.
Rashid
,
A.
Vakurov
,
S.
Mohamadi
,
D.
Sanver
, and
A.
Nelson
, “
Substituents modulate biphenyl penetration into lipid membranes
,”
Biochim. Biophys. Acta, Biomembr.
1859
(
5
),
712
721
(
2017
).
33.
A.
Rashid
,
A.
Vakurov
, and
A.
Nelson
, “
Role of electrolyte in the occurrence of the voltage induced phase transitions in a dioleoyl phosphatidylcholine monolayer on Hg
,”
Electrochim. Acta
155
,
458
465
(
2015
).
34.
A.
Nelson
and
N.
Auffret
, “
Phospholipid monolayers of di-oleoyl lecithin at the mercury/water interface
,”
J. Electroanal. Chem. Interfacial Electrochem.
244
(
1-2
),
99
113
(
1988
).
35.
F.
Neville
,
D.
Gidalevitz
,
G.
Kale
, and
A.
Nelson
, “
Electrochemical screening of anti-microbial peptide LL-37 interaction with phospholipids
,”
Bioelectrochemistry
70
(
2
),
205
213
(
2007
).
36.
L.
Ringstad
,
E.
Protopapa
,
B.
Lindholm-Sethson
,
A.
Schmidtchen
,
A.
Nelson
, and
M.
Malmsten
, “
An electrochemical study into the interaction between complement-derived peptides and DOPC mono-and bilayers
,”
Langmuir
24
(
1
),
208
216
(
2008
).
37.
B.
Drasler
,
P.
Sayre
,
K. G.
Steinhaeuser
,
A.
Petri-Fink
, and
B.
Rothen-Rutishauser
, “
In vitro approaches to assess the hazard of nanomaterials
,”
NanoImpact
8
,
99
116
(
2017
).
38.
R.
Guadagnini
,
B.
Halamoda Kenzaoui
,
L.
Walker
,
G.
Pojana
,
Z.
Magdolenova
,
D.
Bilanicova
,
M.
Saunders
,
L.
Juillerat-Jeanneret
,
A.
Marcomini
, and
A.
Huk
, “
Toxicity screenings of nanomaterials: Challenges due to interference with assay processes and components of classic in vitro tests
,”
Nanotoxicology
9
(
sup1
),
13
24
(
2015
).
39.
A.
Kroll
,
M. H.
Pillukat
,
D.
Hahn
, and
J.
Schnekenburger
, “
Current in vitro methods in nanoparticle risk assessment: Limitations and challenges
,”
Eur. J. Pharm. Biopharm.
72
(
2
),
370
377
(
2009
).
40.
A.
Nelson
, “
Electrochemistry of mercury supported phospholipid monolayers and bilayers
,”
Curr. Opin. Colloid Interface Sci.
15
(
6
),
455
466
(
2010
).
41.
G.
Du
,
Q.
Fang
, and
J. M.
den Toonder
, “
Microfluidics for cell-based high throughput screening platforms—A review
,”
Anal. Chim. Acta
903
,
36
50
(
2016
).
42.
Á.
Ríos
,
M.
Zougagh
, and
M.
Avila
, “
Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories? A review
,”
Anal. Chim. Acta
740
,
1
11
(
2012
).
43.
G. M.
Whitesides
, “
The origins and the future of microfluidics
,”
Nature
442
(
7101
),
368
(
2006
).
44.
E. K.
Sackmann
,
A. L.
Fulton
, and
D. J.
Beebe
, “
The present and future role of microfluidics in biomedical research
,”
Nature
507
(
7491
),
181
(
2014
).
45.
B.
Nasseri
,
N.
Soleimani
,
N.
Rabiee
,
A.
Kalbasi
,
M.
Karimi
, and
M. R.
Hamblin
, “
Point-of-care microfluidic devices for pathogen detection
,”
Biosens. Bioelectron.
117
,
112
(
2018
).
46.
J.
Zhang
,
S.
Yan
,
D.
Yuan
,
G.
Alici
,
N.-T.
Nguyen
,
M. E.
Warkiani
, and
W.
Li
, “
Fundamentals and applications of inertial microfluidics: A review
,”
Lab Chip
16
(
1
),
10
34
(
2016
).
47.
P. M.
Valencia
,
O. C.
Farokhzad
,
R.
Karnik
, and
R.
Langer
, “
Microfluidic technologies for accelerating the clinical translation of nanoparticles
,”
Nat. Nanotechnol.
7
(
10
),
623
(
2012
).
48.
D.
Pike
,
N.
Kapur
,
P.
Millner
, and
D.
Stewart
, “
Flow cell design for effective biosensing
,”
Sensors
13
(
1
),
58
70
(
2013
).
49.
R.
Barker
,
B.
Pickles
,
N.
Kapur
,
T.
Hughes
,
E.
Barmatov
, and
A.
Neville
, “
Flow cell apparatus for quantitative evaluation of carbon steel corrosion during transitions in fluid composition: Application to transition from inhibited hydrochloric acid to sodium chloride brine
,”
Corros. Sci.
138
,
116
129
(
2018
).
50.
COMSOL Multiphysics v5.3a Chemical Reaction Engineering Module User’s Guide,
2017
.
51.
L. Y.
Rizzo
,
S. K.
Golombek
,
M. E.
Mertens
,
Y.
Pan
,
D.
Laaf
,
J.
Broda
,
J.
Jayapaul
,
D.
Möckel
,
V.
Subr
, and
W. E.
Hennink
, “
In vivo nanotoxicity testing using the zebrafish embryo assay
,”
J. Mater. Chem. B
1
(
32
),
3918
3925
(
2013
).
52.
A.
DeLean
,
P.
Munson
, and
D.
Rodbard
, “
Simultaneous analysis of families of sigmoidal curves: Application to bioassay, radioligand assay, and physiological dose-response curves
,”
Am. J. Physiology
235
(
2
),
E97
(
1978
).
53.
J. J.
Broeders
,
B. J.
Blaauboer
, and
J. L.
Hermens
, “
In vitro biokinetics of chlorpromazine and the influence of different dose metrics on effect concentrations for cytotoxicity in Balb/c 3T3, Caco-2 and HepaRG cell cultures
,”
Toxicol. Vitro
27
(
3
),
1057
1064
(
2013
).

Supplementary Material

You do not currently have access to this content.