Quantum key distribution (QKD) offers the ability of information theoretic security key exchange. The secure key rate is an important indicator for the practical QKD systems, which determines what kinds of applications can be supported. One most effective way to enhance the secure key rate is to increase the system repetition frequency. Here, we report an implementation of a high-speed DC-coupled modulator driving circuit with a repetition rate of up to 5 GHz. The circuit outputs a multi-amplitude return-to-zero pattern pulse with a maximum amplitude of 7.5 V. The design adapts to the various electro-optic modulators widely employed in QKD systems. The minimum pulse width is measured as 75 ps, with the relative noise level less than 1.5% for all the output amplitudes under random modulation.

1.
F.
Xu
,
X. M.
Zhang
,
H.-K.
Lo
,
J.-W.
Pan
 et al., arXiv:1903.09051 (
2019
).
2.
C. H.
Bennett
,
F.
Bessette
,
G.
Brassard
,
L.
Salvail
, and
J.
Smolin
,
J. Cryptol.
5
,
3
(
1992
).
3.
H.-L.
Yin
,
T.-Y.
Chen
,
Z.-W.
Yu
,
H.
Liu
,
L.-X.
You
,
Y.-H.
Zhou
,
S.-J.
Chen
,
Y.
Mao
,
M.-Q.
Huang
,
W.-J.
Zhang
 et al.,
Phys. Rev. Lett.
117
,
190501
(
2016
).
4.
A.
Boaron
,
G.
Boso
,
D.
Rusca
,
C.
Vulliez
,
C.
Autebert
,
M.
Caloz
,
M.
Perrenoud
,
G.
Gras
,
F.
Bussières
,
M.-J.
Li
 et al.,
Phys. Rev. Lett.
121
,
190502
(
2018
).
5.
X.-T.
Fang
,
P.
Zeng
,
H.
Liu
,
M.
Zou
,
W.
Wu
,
Y.-L.
Tang
,
Y.-J.
Sheng
,
Y.
Xiang
,
W.
Zhang
,
H.
Li
 et al., arXiv:1908.01271 (
2019
).
6.
M.
Peev
,
C.
Pacher
,
R.
Alléaume
,
C.
Barreiro
,
J.
Bouda
,
W.
Boxleitner
,
T.
Debuisschert
,
E.
Diamanti
,
M.
Dianati
,
J.
Dynes
 et al.,
New J. Phys.
11
,
075001
(
2009
).
7.
D.
Stucki
,
M.
Legre
,
F.
Buntschu
,
B.
Clausen
,
N.
Felber
,
N.
Gisin
,
L.
Henzen
,
P.
Junod
,
G.
Litzistorf
,
P.
Monbaron
 et al.,
New J. Phys.
13
,
123001
(
2011
).
8.
M.
Sasaki
,
M.
Fujiwara
,
H.
Ishizuka
,
W.
Klaus
,
K.
Wakui
,
M.
Takeoka
,
S.
Miki
,
T.
Yamashita
,
Z.
Wang
,
A.
Tanaka
 et al.,
Opt. Express
19
,
10387
(
2011
).
9.
10.
S.
Wang
,
W.
Chen
,
Z.-Q.
Yin
,
H.-W.
Li
,
D.-Y.
He
,
Y.-H.
Li
,
Z.
Zhou
,
X.-T.
Song
,
F.-Y.
Li
,
D.
Wang
 et al.,
Opt. Express
22
,
21739
(
2014
).
11.
S.-K.
Liao
,
W.-Q.
Cai
,
W.-Y.
Liu
,
L.
Zhang
,
Y.
Li
,
J.-G.
Ren
,
J.
Yin
,
Q.
Shen
,
Y.
Cao
,
Z.-P.
Li
 et al.,
Nature
549
,
43
(
2017
).
12.
P.
Sibson
,
C.
Erven
,
M.
Godfrey
,
S.
Miki
,
T.
Yamashita
,
M.
Fujiwara
,
M.
Sasaki
,
H.
Terai
,
M. G.
Tanner
,
C. M.
Natarajan
 et al.,
Nat. Commun.
8
,
13984
(
2017
).
13.
P.
Sibson
,
J. E.
Kennard
,
S.
Stanisic
,
C.
Erven
,
J. L.
O’Brien
, and
M. G.
Thompson
,
Optica
4
,
172
(
2017
).
14.
T. K.
Paraïso
,
I.
De Marco
,
T.
Roger
,
D. G.
Marangon
,
J. F.
Dynes
,
M.
Lucamarini
,
Z.
Yuan
, and
A. J.
Shields
,
npj Quantum Inf.
5
,
42
(
2019
).
15.
Z.
Yuan
,
A.
Plews
,
R.
Takahashi
,
K.
Doi
,
W.
Tam
,
A.
Sharpe
,
A.
Dixon
,
E.
Lavelle
,
J.
Dynes
,
A.
Murakami
 et al.,
J. Lightwave Technol.
36
,
3427
(
2018
).
16.
K.
Patel
,
J.
Dynes
,
M.
Lucamarini
,
I.
Choi
,
A.
Sharpe
,
Z.
Yuan
,
R.
Penty
, and
A.
Shields
,
Appl. Phys. Lett.
104
,
051123
(
2014
).
17.
A.
Dixon
,
Z.
Yuan
,
J.
Dynes
,
A.
Sharpe
, and
A.
Shields
,
Opt. Express
16
,
18790
(
2008
).
18.
A.
Boaron
,
B.
Korzh
,
R.
Houlmann
,
G.
Boso
,
D.
Rusca
,
S.
Gray
,
M.-J.
Li
,
D.
Nolan
,
A.
Martin
, and
H.
Zbinden
,
Appl. Phys. Lett.
112
,
171108
(
2018
).
19.
S.
Wang
,
W.
Chen
,
Z.-Q.
Yin
,
D.-Y.
He
,
C.
Hui
,
P.-L.
Hao
,
G.-J.
Fan-Yuan
,
C.
Wang
,
L.-J.
Zhang
,
J.
Kuang
 et al.,
Opt. Lett.
43
,
2030
(
2018
).
20.
A.
Restelli
,
J. C.
Bienfang
,
A.
Mink
, and
C. W.
Clark
, “
Quantum communications realized II
,”
Proc. SPIE
7236
,
72360L
(
2009
).
21.
Y.
Li
,
Y.-H.
Li
,
H.-B.
Xie
,
Z.-P.
Li
,
X.
Jiang
,
W.-Q.
Cai
,
J.-G.
Ren
,
J.
Yin
,
S.-K.
Liao
, and
C.-Z.
Peng
,
Opt. Lett.
44
,
5262
(
2019
).
22.
K.
Wei
,
W.
Li
,
H.
Tan
,
Y.
Li
,
H.
Min
,
W.-J.
Zhang
,
H.
Li
,
L.
You
,
Z.
Wang
,
X.
Jiang
,
T.-Y.
Chen
,
S.-K.
Liao
,
C.-Z.
Peng
,
F.
Xu
, and
J.-W.
Pan
, “
High-speed measurement-device-independent quantum key distribution with integrated silicon photonics
,” arXiv:1911.00690 [quant-ph] (
2019
).
23.
H.
Takesue
,
E.
Diamanti
,
C.
Langrock
,
M.
Fejer
, and
Y.
Yamamoto
,
Opt. Express
14
,
9522
(
2006
).
24.
H.
Takesue
,
S. W.
Nam
,
Q.
Zhang
,
R. H.
Hadfield
,
T.
Honjo
,
K.
Tamaki
, and
Y.
Yamamoto
,
Nat. Photonics
1
,
343
(
2007
).
25.
I.
Choi
,
R. J.
Young
, and
P. D.
Townsend
,
Opt. Express
18
,
9600
(
2010
).
26.
X.
Tang
,
L.
Ma
,
A.
Mink
,
T.
Chang
,
H.
Xu
,
O.
Slattery
,
A.
Nakassis
,
B.
Hershman
,
D.
Su
, and
R. F.
Boisvert
, “
Quantum communications and quantum imaging VI
,”
Proc. SPIE
7092
,
70920I
(
2008
).
27.
A.
Mink
,
J. C.
Bienfang
,
R.
Carpenter
,
L.
Ma
,
B.
Hershman
,
A.
Restelli
, and
X.
Tang
,
New J. Phys.
11
,
045016
(
2009
).
28.
A.
Mink
, “
Quantum communications realized
,”
Proc. SPIE
6780
,
678014
(
2007
).
29.
N. T.
Islam
,
C. C. W.
Lim
,
C.
Cahall
,
J.
Kim
, and
D. J.
Gauthier
,
Sci. Adv.
3
,
e1701491
(
2017
).
30.
R.
Valivarthi
,
I.
Lucio-Martinez
,
P.
Chan
,
A.
Rubenok
,
C.
John
,
D.
Korchinski
,
C.
Duffin
,
F.
Marsili
,
V.
Verma
,
M. D.
Shaw
,
J. A.
Stern
,
S. W.
Nam
,
D.
Oblak
,
Q.
Zhou
,
J. A.
Slater
, and
W.
Tittel
,
J. Mod. Opt.
62
,
1141
(
2015
).
31.
X.
Zhong
,
J.
Hu
,
M.
Curty
,
L.
Qian
, and
H.-K.
Lo
,
Phys. Rev. Lett.
123
,
100506
(
2019
).
32.
Y.
Liu
,
Z.-W.
Yu
,
W.
Zhang
,
J.-Y.
Guan
,
J.-P.
Chen
,
C.
Zhang
,
X.-L.
Hu
,
H.
Li
,
C.
Jiang
,
J.
Lin
,
T.-Y.
Chen
,
L.
You
,
Z.
Wang
,
X.-B.
Wang
,
Q.
Zhang
, and
J.-W.
Pan
,
Phys. Rev. Lett.
123
,
100505
(
2019
).
You do not currently have access to this content.