The dependence of the nuclear magnetic resonance relaxation rate on the magnetic field has been widely studied, in particular, in biomedical areas with the objectives to better understand the underlying microscopic mechanisms in tissues and provide biomarkers of diseases. By combining fast-field cycling (FFC) and magnetic resonance imaging (MRI), it is possible to provide localized relaxation dispersion measurements in heterogeneous systems with recent demonstrations in solutions, biological samples, human beings, and small animals. We report here the developments and performances of a device designed for small animal FFC–MRI comprising a resistive insert technology operating inside a 1.5 T MRI system. Specific measurement methods were developed to characterize the system efficiency, response time, homogeneity, stability, and compensation. By adding a non-linear element in the system and using a dual amplifier strategy, it is shown that large field offsets can be produced during relaxation periods while maintaining precise field control during detection periods. The measurement of longitudinal nuclear magnetic relaxation dispersion (NMRD) profiles in the range of 1.08 T–1.92 T is reported, essentially displaying a linear variation in this range for common MRI contrast agents. The slopes of both the longitudinal and transverse relaxation dispersion profiles at 1.5 T are measured and validated, extending the capabilities of previous approaches. The performances of a longitudinal relaxation dispersion mapping method are finally reported, opening the way to quantitative preclinical dispersion imaging studies at a high FFC–MRI field.

2.
M. H.
Levitt
,
Spin Dynamics
(
John Wiley & Sons
,
Chichester, New York
,
2001
).
3.
A. G.
Redfield
,
IBM J. Res. Dev.
1
,
19
(
1957
).
4.
A.
Abragam
,
The Principles of Nuclear Magnetism
(
Oxford University Press
,
New York
,
1961
).
5.
6.
R.
Kimmich
and
E.
Anoardo
,
Prog. Nucl. Magn. Reson. Spectrosc.
44
,
257
(
2004
).
7.
Field-Cycling NMR Relaxometry: Instrumentation, Model Theories and Applications
, edited by
R.
Kimmich
(
The Royal Society of Chemistry
,
2019
).
8.
O.
Lips
,
A. F.
Privalov
,
S. V.
Dvinskikh
, and
F.
Fujara
,
J. Magn. Reson.
149
,
22
(
2001
).
9.
Y.
Gossuin
,
Z.
Serhan
,
L.
Sandiford
,
D.
Henrard
,
T.
Marquardsen
,
R. T. M.
de Rosales
,
D.
Sakellariou
, and
F.
Ferrage
,
Appl. Magn. Reson.
47
,
237
(
2016
).
10.
R. M.
Steele
,
J.-P.
Korb
,
G.
Ferrante
, and
S.
Bubici
,
Magn. Reson. Chem.
54
,
502
(
2016
).
11.
S.
Kruber
,
G. D.
Farrher
, and
E.
Anoardo
,
J. Magn. Reson.
259
,
216
(
2015
), San Diego Calif 1997.
12.
S. H.
Koenig
and
R. D.
Brown
,
Magn. Reson. Med.
1
,
437
(
1984
).
13.
G.
Diakova
,
J.-P.
Korb
, and
R. G.
Bryant
,
Magn. Reson. Med.
68
,
272
(
2012
).
14.
Y.
Gossuin
,
A.
Roch
,
R. N.
Muller
, and
P.
Gillis
,
Magn. Reson. Med.
43
,
237
(
2000
).
15.
Q. L.
Vuong
,
P.
Gillis
,
A.
Roch
, and
Y.
Gossuin
,
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
9
,
e1468
(
2017
).
16.
P. A.
Rinck
,
H. W.
Fischer
,
L. V.
Elst
,
Y.
Van Haverbeke
, and
R. N.
Muller
,
Radiology
168
,
843
(
1988
).
17.
L. M.
Broche
,
S. R.
Ismail
,
N. A.
Booth
, and
D. J.
Lurie
,
Magn. Reson. Med.
67
,
1453
(
2012
).
18.
L. M.
Broche
,
G. P.
Ashcroft
, and
D. J.
Lurie
,
Magn. Reson. Med.
68
,
358
(
2012
).
19.
A. M.
Oros-Peusquens
,
M.
Laurila
, and
N. J.
Shah
,
Magn. Reson. Mater. Phys., Biol. Med.
21
,
131
(
2008
).
20.
J. K.
Alford
,
B. K.
Rutt
,
T. J.
Scholl
,
W. B.
Handler
, and
B. A.
Chronik
,
Magn. Reson. Med.
61
,
796
(
2009
).
21.
D. J.
Lurie
,
M. A.
Foster
,
D.
Yeung
, and
J. M.
Hutchison
,
Phys. Med. Biol.
43
,
1877
(
1998
).
22.
S. E.
Ungersma
,
N. I.
Matter
,
J. W.
Hardy
,
R. D.
Venook
,
A.
Macovski
,
S. M.
Conolly
, and
G. C.
Scott
,
Magn. Reson. Med.
55
,
1362
(
2006
).
23.
K. J.
Pine
,
G. R.
Davies
, and
D. J.
Lurie
,
Magn. Reson. Med.
63
,
1698
(
2010
).
24.
U. C.
Hoelscher
,
S.
Lother
,
F.
Fidler
,
M.
Blaimer
, and
P.
Jakob
,
Magn. Reson. Mater. Phys., Biol. Med.
25
,
223
(
2012
).
25.
U. C.
Hoelscher
and
P. M.
Jakob
,
Magn. Reson. Mater. Phys., Biol. Med.
26
,
249
(
2013
).
26.
K. J.
Pine
,
F.
Goldie
, and
D. J.
Lurie
,
Magn. Reson. Med.
72
,
1492
(
2014
).
27.
L. M.
Broche
,
P. J.
Ross
,
K. J.
Pine
, and
D. J.
Lurie
,
J. Magn. Reson.
238
,
44
(
2014
).
28.
C. T.
Harris
,
W. B.
Handler
,
Y.
Araya
,
F.
Martínez-Santiesteban
,
J. K.
Alford
,
B.
Dalrymple
,
F.
Van Sas
,
B. A.
Chronik
, and
T. J.
Scholl
,
Magn. Reson. Med.
72
,
1182
(
2014
).
29.
P. J.
Ross
,
L. M.
Broche
, and
D. J.
Lurie
,
Magn. Reson. Med.
73
,
1120
(
2015
).
30.
L. M.
Broche
,
P. J.
Ross
,
G. R.
Davies
, and
D. J.
Lurie
,
Magn. Reson. Imaging
44
,
55
(
2017
).
31.
Y. T.
Araya
,
F.
Martínez-Santiesteban
,
W. B.
Handler
,
C. T.
Harris
,
B. A.
Chronik
, and
T. J.
Scholl
,
NMR Biomed.
30
,
e3789
(
2017
).
32.
M.
Bodenler
,
M.
Basini
,
M. F.
Casula
,
E.
Umut
,
C.
Gosweiner
,
A.
Petrovic
,
D.
Kruk
, and
H.
Scharfetter
,
J. Magn. Reson.
290
,
68
(
2018
).
33.
M.
Bödenler
,
L.
de Rochefort
,
P. J.
Ross
,
N.
Chanet
,
G.
Guillot
,
G. R.
Davies
,
C.
Gösweiner
,
H.
Scharfetter
,
D. J.
Lurie
, and
L. M.
Broche
,
Mol. Phys.
117
,
832
(
2018
).
34.
N.
Chanet
,
G.
Guillot
,
I.
Leguerney
,
R.-M.
Dubuisson
,
C.
Sebrié
,
A.
Ingels
,
N.
Assoun
,
E.
Daudigeos-Dubus
,
B.
Geoerger
,
N.
Lassau
,
L.
Broche
, and
L.
de Rochefort
,
Proc. Int. Soc. Magn. Reson. Med.
2262
(
2018
), see http://archive.ismrm.org/2018/2262.html.
35.
Field-Cycling NMR Relaxometry: Instrumentation, Model Theories and Applications
, edited by
R.
Kimmich
(
The Royal Society of Chemistry
,
2019
), pp.
358
384
.
36.
L.
de Rochefort
,
E.
Lee
,
M.
Pollelo
,
L.
Darrasse
,
G.
Ferrante
, and
B.
Ruth
,
Proc. Int. Soc. Magn. Reson. Med.
4165
(
2012
), see http://archive.ismrm.org/2012/4165.html.
37.
N.
De Zanche
,
C.
Barmet
,
J. A.
Nordmeyer-Massner
, and
K. P.
Pruessmann
,
Magn. Reson. Med.
60
,
176
(
2008
).
38.
D. J.
Lurie
,
S.
Aime
,
S.
Baroni
,
N. A.
Booth
,
L. M.
Broche
,
C.-H.
Choi
,
G. R.
Davies
,
S.
Ismail
,
D. O.
Hogain
, and
K. J.
Pine
,
C. R. Phys.
11
,
136
(
2010
).
39.
J.
Mispelter
,
M.
Lupu
, and
A.
Briguet
,
NMR Probeheads for Biophysical and Biomedical Experiments
(
Imperial College Press
,
2006
).
40.
T. E.
Conturo
and
G. D.
Smith
,
Magn. Reson. Med.
15
,
420
(
1990
).
41.
L.
de Rochefort
,
R.
Brown
,
M. R.
Prince
, and
Y.
Wang
,
Magn. Reson. Med.
60
,
1003
(
2008
).
42.
M.
Rohrer
,
H.
Bauer
,
J.
Mintorovitch
,
M.
Requardt
, and
H.-J.
Weinmann
,
Invest. Radiol.
40
,
715
(
2005
).
43.
E.
Goldammer
and
W.
Kreysch
,
Ber. Bunsen-Ges. Phys. Chem.
82
,
463
(
1978
).
44.
F.
Noack
,
Prog. Nucl. Magn. Reson. Spectrosc.
18
,
171
(
1986
).
45.
G.
Ferrante
,
D.
Canina
,
E.
Bonardi
,
M.
Polello
,
S.
Sykora
,
P.
Golzi
,
C.
Vacchi
, and
R.
Stevens
,
5th Conference on Field Cycling NMR Relaxometry
Torino Italy
,
2007
.
46.
S.
Laurent
,
L.
Vander Elst
, and
R. N.
Muller
,
Contrast Media Mol. Imaging
1
,
128
(
2006
).
47.
D.
Kruk
,
E.
Masiewicz
,
E.
Umut
,
A.
Petrovic
,
R.
Kargl
, and
H.
Scharfetter
,
J. Chem. Phys.
150
,
184306
(
2019
).
48.
M.
Bödenler
,
K. P.
Malikidogo
,
J.-F.
Morfin
,
C. S.
Aigner
,
É.
Tóth
,
C. S.
Bonnet
, and
H.
Scharfetter
,
Chemistry
25
,
8236
(
2019
).
You do not currently have access to this content.