We propose dual bias modulation electrostatic force microscopy (DEFM) for variable frequency measurements of surface depletion capacitance on a semiconductor. In DEFM, dual alternating current bias voltages at angular frequencies of ω1 and ω2 are applied to generate an electrostatic force, and we detect the high order term at an angular frequency of ω2 − 2ω1 in the electrostatic force from which a derivative of surface depletion capacitance by voltage (∂C/∂V) can be evaluated. Even with a fixed value of ω2 − 2ω1 at a specific resonant frequency of the cantilever, to ensure sufficient sensitivity of the electrostatic force, a pair of ω1 and ω2 can be varied; this enables variable frequency measurements of ∂C/∂V by DEFM. The validity of the quantitation and spatial resolution of DEFM were assessed through the analysis of metal-oxide-silicon and Zn(O, S)/Cu(In,Ga)(Se,S)2 samples.

1.
M.
Nonnenmacher
,
M. P.
O’Boyle
, and
H. K.
Wickramasinghe
, “
Kelvin probe force microscopy
,”
Appl. Phys. Lett.
58
,
2921
2923
(
1991
).
2.
A.
Kikukawa
,
S.
Hosaka
, and
R.
Imura
, “
Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy
,”
Appl. Phys. Lett.
66
,
3510
3512
(
1995
).
3.
T.
Glatzel
,
D. F.
Marrón
,
T.
Schedel-Niedrig
,
S.
Sadewasser
, and
M. C.
Lux-Steiner
, “
CuGaSe2 solar cell cross section studied by Kelvin probe force microscopy in ultrahigh vacuum
,”
Appl. Phys. Lett.
81
,
2017
2019
(
2002
).
4.
S.
Sadewasser
,
T.
Glatzel
,
S.
Schuler
,
S.
Nishiwaki
,
R.
Kaigawa
, and
M.
Lux-Steiner
, “
Kelvin probe force microscopy for the nano scale characterization of chalcopyrite solar cell materials and devices
,” in
Proceedings of Symposium B, Thin Film Chalcogenide Photovoltaic Materials, E-MRS Spring Meeting
[
Thin Solid Films
431-432
,
257
261
(
2003
)].
5.
T.
Glatzel
,
H.
Steigert
,
S.
Sadewasser
,
R.
Klenk
, and
M.
Lux-Steiner
, “
Potential distribution of Cu(In, Ga)(S, Se)2-solar cell cross-sections measured by Kelvin probe force microscopy
,”
Thin Solid Films
480-481
,
177
182
(
2005
), eMRS 2004.
6.
R.
Giridharagopal
,
G. E.
Rayermann
,
G.
Shao
,
D. T.
Moore
,
O. G.
Reid
,
A. F.
Tillack
,
D. J.
Masiello
, and
D. S.
Ginger
, “
Submicrosecond time resolution atomic force microscopy for probing nanoscale dynamics
,”
Nano Lett.
12
,
893
898
(
2012
).
7.
D. U.
Karatay
,
J. S.
Harrison
,
M. S.
Glaz
,
R.
Giridharagopal
, and
D. S.
Ginger
, “
Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution
,”
Rev. Sci. Instrum.
87
,
053702
(
2016
).
8.
K.
Araki
,
Y.
Ie
,
Y.
Aso
,
H.
Ohoyama
, and
T.
Matsumoto
, “
Time-resolved electrostatic force microscopy using tip-synchronized charge generation with pulsed laser excitation
,”
Commun. Phys.
2
,
10
(
2019
).
9.
K.
Kobayashi
,
H.
Yamada
, and
K.
Matsushige
, “
Dopant profiling on semiconducting sample by scanning capacitance force microscopy
,”
Appl. Phys. Lett.
81
,
2629
2631
(
2002
).
10.
K.
Kimura
,
K.
Kobayashi
,
H.
Yamada
,
K.
Matsushige
, and
K.
Usuda
, “
Scanning capacitance force microscopy imaging of metal-oxide-semiconductor field effect transistors
,”
J. Vac. Sci. Technol., B
23
,
1454
1458
(
2005
).
11.
Y.
Martin
,
D. W.
Abraham
, and
H. K.
Wickramasinghe
, “
High-resolution capacitance measurement and potentiometry by force microscopy
,”
Appl. Phys. Lett.
52
,
1103
1105
(
1988
).
12.
D. W.
Abraham
,
C.
Williams
,
J.
Slinkman
, and
H. K.
Wickramasinghe
, “
Lateral dopant profiling in semiconductors by force microscopy using capacitive detection
,”
J. Vac. Sci. Technol., B
9
,
703
706
(
1991
).
13.
L.
Terman
, “
An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes
,”
Solid-State Electron.
5
,
285
299
(
1962
).
14.
S.
Kitamura
and
M.
Iwatsuki
, “
High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope
,”
Appl. Phys. Lett.
72
,
3154
3156
(
1998
).
15.
H.
Yamada
, “
Present status and future prospects of electric force microscopy
,”
Nonlinear Theory Appl. IEICE
8
,
80
84
(
2017
).
16.
B. E.
Deal
, “
The current understanding of charges in the thermally oxidized silicon structure
,”
J. Electrochem. Soc.
121
,
198C
(
1974
).
17.
E. H.
Nicollian
and
J. R.
Brews
,
MOS (Metal Oxide Semiconductor) Physics and Technology
, Wiley classics library (
Wiley-Interscience
,
2003
).
18.
R. R.
Razouk
and
B. E.
Deal
, “
Dependence of interface state density on silicon thermal oxidation process variables
,”
J. Electrochem. Soc.
126
,
1573
1581
(
1979
).
You do not currently have access to this content.