A 300 keV transmission electron microscope was modified to produce broadband pulsed beams that can be, in principle, between 40 MHz and 12 GHz, corresponding to temporal resolution in the nanosecond to picosecond range without an excitation laser. The key enabling technology is a pair of phase-matched modulating and de-modulating traveling wave metallic comb striplines (pulsers). An initial temporal resolution of 30 ps was achieved with a strobe frequency of 6.0 GHz. The placement of the pulsers, mounted immediately below the gun, allows for preservation of all optical configurations, otherwise available to the unmodified instrument, and therefore makes such a post-modified instrument for dual-use, i.e., both pulsed-beam mode (i.e., stroboscopic time-resolved) and conventional continuous waveform mode. In this article, we describe the elements inserted into the beam path, challenges encountered during integration with an in-service microscope, and early results from an electric-field-driven pump–probe experiment. We conclude with ideas for making this class of instruments broadly applicable for examining cyclical and repeatable phenomena.

1.
A.-C.
Milazzo
,
P.
Leblanc
,
F.
Duttweiler
,
L.
Jin
,
J. C.
Bouwer
,
S.
Peltier
,
M.
Ellisman
,
F.
Bieser
,
H. S.
Matis
,
H.
Wieman
,
P.
Denes
,
S.
Kleinfelder
, and
N.-H.
Xuong
,
Ultramicroscopy
104
,
152
(
2005
).
2.
L.
Jin
,
A.-C.
Milazzo
,
S.
Kleinfelder
,
S.
Li
,
P.
Leblanc
,
F.
Duttweiler
,
J. C.
Bouwer
,
S. T.
Peltier
,
M. H.
Ellisman
, and
N.-H.
Xuong
,
J. Struct. Biol.
161
,
352
(
2008
).
3.
G.
McMullan
,
S.
Chen
,
R.
Henderson
, and
A. R.
Faruqi
,
Ultramicroscopy
109
,
1126
(
2009
).
4.
G.
McMullan
,
A. T.
Clark
,
R.
Turchetta
, and
A. R.
Faruqi
,
Ultramicroscopy
109
,
1411
(
2009
).
5.
V. A.
Lobastov
,
R.
Srinivasan
, and
A. H.
Zewail
, “
Four-dimensional ultrafast electron microscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
102
(
20
),
7069
(
2005
).
7.
T.
LaGrange
,
M. R.
Armstrong
,
K.
Boyden
,
C. G.
Brown
,
G. H.
Campbell
,
J. D.
Colvin
,
W. J.
DeHope
,
A. M.
Frank
,
D. J.
Gibson
,
F. V.
Hartemann
,
J. S.
Kim
,
W. E.
King
,
B. J.
Pyke
,
B. W.
Reed
,
M. D.
Shirk
,
R. M.
Shuttlesworth
,
B. C.
Stuart
,
B. R.
Torralva
, and
N. D.
Browning
,
Appl. Phys. Lett.
89
,
044105
(
2006
).
8.
D. J.
Flannigan
and
A. H.
Zewail
,
Acc. Chem. Res.
45
,
1828
(
2012
).
9.
A.
Feist
,
N.
Bach
,
N.
Rubiano da Silva
,
T.
Danz
,
M.
Möller
,
K. E.
Priebe
,
T.
Domröse
,
J. G.
Gatzmann
,
S.
Rost
,
J.
Schauss
,
S.
Strauch
,
R.
Bormann
,
M.
Sivis
,
S.
Schäfer
, and
C.
Ropers
,
Ultramicroscopy
176
,
63
(
2017
), 70th Birthday of Robert Sinclair and 65th Birthday of Nestor J. Zaluzec PICO 2017 – Fourth Conference on Frontiers of Aberration Corrected Electron Microscopy.
10.
T.
LaGrange
,
B. W.
Reed
, and
D. J.
Masiel
,
MRS Bull.
40
,
22
(
2015
).
11.
P.
Binev
,
W.
Dahmen
,
R.
DeVore
,
P.
Lamby
,
D.
Savu
, and
R.
Sharpley
, in
Modeling Nanoscale Imaging in Electron Microscopy
, Nanostructure Science and Technology, edited by
T.
Vogt
,
W.
Dahmen
, and
P.
Binev
(
Springer US
,
Boston, MA
,
2012
), pp.
73
126
.
12.
A.
Stevens
,
L.
Kovarik
,
P.
Abellan
,
X.
Yuan
,
L.
Carin
, and
N. D.
Browning
,
Adv. Struct. Chem. Imaging
1
,
10
(
2015
).
13.
X.
Liu
,
S.
Zhang
,
A.
Yurtsever
, and
J.
Liang
,
Micron
117
,
47
(
2019
).
14.
D. A.
Plemmons
and
D. J.
Flannigan
,
Chem. Phys. Lett.
683
,
186
(
2017
), Ahmed Zewail (1946–2016): Commemoration Issue of Chemical Physics Letters.
15.
G. S.
Plows
and
W. C.
Nixon
,
J. Phys. E: Sci. Instrum.
1
,
595
(
1968
).
16.
K.
Soma
,
S.
Konings
,
R.
Aso
,
N.
Kamiuchi
,
G.
Kobayashi
,
H.
Yoshida
, and
S.
Takeda
,
Ultramicroscopy
181
,
27
(
2017
).
17.
A.
Lassise
,
P. H. A.
Mutsaers
, and
O. J.
Luiten
,
Rev. Sci. Instrum.
83
,
043705
(
2012
).
18.
J.
Qiu
,
G.
Ha
,
C.
Jing
,
S. V.
Baryshev
,
B. W.
Reed
,
J. W.
Lau
, and
Y.
Zhu
,
Ultramicroscopy
161
,
130
(
2016
).
19.
W.
Verhoeven
,
J. F. M.
van Rens
,
E. R.
Kieft
,
P. H. A.
Mutsaers
, and
O. J.
Luiten
,
Ultramicroscopy
188
,
85
(
2018
).
20.
Certain commercial equipment, instruments, or materials are identified in this presentation to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.
21.
C.
Jing
,
Y.
Zhu
,
A.
Liu
,
K.
Schliep
,
X.
Fu
,
Y.
Zhao
,
E.
Montgomery
,
W.
Rush
,
A.
Kanareykin
,
M.
Katz
, and
J.
Lau
,
Ultramicroscopy
207
,
112829
(
2019
).
22.
K.
Zhang
and
D.
Li
,
Electromagnetic Theory for Microwaves and Optoelectronics
, 2nd ed. (
Springer
,
Berlin; New York
,
2008
), Chap. 7.
23.
J.
Shi
,
H.
Chen
,
C.
Tang
,
Y.
Du
,
W.
Huang
,
L.
Yan
,
R.
Li
, and
Q.
Du
,
Proc. Part. Accel. Conf.
TH5PFP094
,
3429
3432
(
2009
).
24.
L.
Reimer
,
Transmission Electron Microscopy: Physics of Image Formation and Microanalysis
, Springer Series in Optical Sciences, 3rd ed. (
Springer-Verlag
,
Berlin Heidelberg
,
1993
).
25.
E. J.
VandenBussche
and
D. J.
Flannigan
,
Nano Lett.
19
(
9
),
6687
(
2019
).
26.
C.
Kisielowski
,
P.
Specht
,
B.
Freitag
,
E. R.
Kieft
,
W.
Verhoeven
,
J. F. M.
van Rens
,
P.
Mutsaers
,
J.
Luiten
,
S.
Rozeveld
,
J.
Kang
,
A. J.
McKenna
,
P.
Nickias
, and
D. F.
Yancey
,
Adv. Funct. Mater.
29
,
1807818
(
2019
).

Supplementary Material

You do not currently have access to this content.