A hybrid Genetic Algorithm (GA) and Levenberg–Marquardt (GA–LM) method is proposed for cell suspension measurement with electrical impedance spectroscopy. This algorithm combines the GA with global search ability and Levenberg–Marquardt (LM) algorithm with local search ability, which has the advantages of high accuracy and high robustness. First, GA–LM is compared with GA and LM algorithm separately by ideal simulation. Second, Gaussian noise is added to the ideal simulation data. The anti-noise ability of the GA–LM is discussed. Finally, experiments are conducted to verify the practicability of the proposed GA–LM method. In the experiment, GA–LM is used to fit the impedance spectrum of yeast suspensions with different volume fractions and active states. The results show that the GA–LM algorithm can converge to the real value that is set in the simulation under ideal numerical simulation conditions. In the simulation within 2% noise level, the mean relative error of the parameter solution is less than 4%, and the root mean square error of the fitting is less than 0.4. This method also performs well in fitting of the experimental data. In addition, the electric double layer resistance and cell membrane capacitance are selected as the main indicators for the identification of yeast suspension concentration and activity, respectively.

1.
Y.
Yang
,
M.
Kang
,
Y.
Lu
 et al., “
Design of a wideband excitation source for fast bioimpedance spectroscopy
,”
Meas. Sci. Technol.
22
(
1
),
013001
(
2011
).
2.
C.
Tan
,
S.
Lv
,
F.
Dong
 et al., “
Image reconstruction based on convolutional neural network for electrical resistance tomography
,”
IEEE Sensors J.
19
(
1
),
196
204
(
2019
).
3.
J.
Yao
and
M.
Takei
, “
Application of process tomography to multiphase flow measurement in industrial and biomedical fields: A review
,”
IEEE Sensors J.
17
(
24
),
8196
8205
(
2017
).
4.
Z.
Jiang
,
J.
Yao
,
L.
Wang
 et al., “
Development of a portable electrochemical impedance spectroscopy system for bio-detection
,”
IEEE Sensors J.
19
(
15
),
5979
5987
(
2019
).
5.
Y.
Yang
,
J.
Jia
,
S.
Smith
 et al., “
A miniature electrical impedance tomography sensor and 3-D image reconstruction for cell imaging
,”
IEEE Sensors J.
17
(
2
),
514
523
(
2017
).
6.
P.
Bertemes-Filho
, “
Electrical impedance spectroscopy
,” in
Bioimpedance in Biomedical Applications and Research
, 2nd ed. (
Springer
,
Cham, Germany
,
2018
), pp.
5
27
.
7.
T.
Chanchairujira
and
R. L.
Mehta
, “
Assessing fluid change in hemodialysis: Whole body versus sum of segmental bioimpedance spectroscopy
,”
Kidney Int.
60
(
6
),
2337
2342
(
2001
).
8.
P.
Héroux
and
M.
Bourdages
, “
Monitoring living tissues by electrical impedance spectroscopy
,”
Ann. Biomed. Eng.
22
(
3
),
328
337
(
1994
).
9.
Y.-Y.
Lu
,
J.-J.
Huang
,
Y.-J.
Huang
 et al., “
Cell growth characterization using multi-electrode bioimpedance spectroscopy
,”
Meas. Sci. Technol.
24
(
3
),
035701
(
2013
).
10.
A. S.
Paterno
,
R. A.
Stiz
, and
P.
Bertemes-Filho
, “
Frequency-domain reconstruction of signals in electrical bioimpedance spectroscopy
,”
Med. Biol. Eng. Comput.
47
(
10
),
1093
1102
(
2009
).
11.
C.
Shah
,
F. A.
Vicini
, and
D.
Arthur
, “
Bioimpedance spectroscopy for breast cancer related lymphedema assessment: Clinical practice guidelines
,”
Breast J.
22
(
6
),
645
650
(
2016
).
12.
D.
Liu
,
A. K.
Khambampati
, and
J.
Du
, “
A parametric level set method for electrical impedance tomography
,”
IEEE Trans. Med. Imag.
37
(
2
),
451
460
(
2018
).
13.
D.
Liu
,
Y.
Zhao
,
A. K.
Khambampati
 et al., “
A parametric level set method for imaging multiphase conductivity using electrical impedance tomography
,”
IEEE Trans. Comput. Imaging
4
(
4
),
552
561
(
2018
).
14.
A. M.
Dhirde
,
N. V.
Dale
,
H.
Salehfar
 et al., “
Equivalent electric circuit modeling and performance analysis of a PEM fuel cell stack using impedance spectroscopy
,”
IEEE Trans. Energy Convers.
25
(
3
),
778
786
(
2010
).
15.
A.
Mansoorifar
,
A.
Koklu
,
S.
Ma
 et al., “
Electrical impedance measurements of biological cells in response to external stimuli
,”
Anal. Chem.
90
(
7
),
4320
4327
(
2018
).
16.
P.
Büschel
,
U.
Tröltzsch
, and
O.
Kanoun
, “
Use of stochastic methods for robust parameter extraction from impedance spectra
,”
Electrochim. Acta
56
(
23
),
8069
8077
(
2011
).
17.
J. R.
Macdonald
,
J.
Schoonman
, and
A. P.
Lehnen
, “
Applicability and power of complex nonlinear least squares for the analysis of impedance and admittance data
,”
J. Electroanal. Chem.
131
,
77
95
(
1982
).
18.
B.
Boukamp
, “
A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems
,”
Solid State Ionics
20
(
1
),
31
44
(
1986
).
19.
J. J.
Moré
, “
The Levenberg-Marquardt algorithm: Implementation and theory
,” in , Lecture Notes in Mathematics (
Springer, Berlin
,
1978
), Vol. 630, pp.
105
116
.
20.
Y.
Tsai
and
D. H.
Whitmore
, “
Nonlinear least-squares analyses of complex impedance and admittance data for solid electrolytes
,”
Solid State Ionics
7
(
2
),
129
139
(
1982
).
21.
J.
Brand
,
Z.
Zhang
, and
R. K.
Agarwal
, “
Extraction of battery parameters of the equivalent circuit model using a multi-objective genetic algorithm
,”
J. Power Sources
247
,
729
737
(
2014
).
22.
S.
Sharifi-Asl
,
M. L.
Taylor
,
Z.
Lu
 et al., “
Modeling of the electrochemical impedance spectroscopic behavior of passive iron using a genetic algorithm approach
,”
Electrochim. Acta
102
,
161
173
(
2013
).
23.
J.
Yao
,
T.
Kodera
,
H.
Obara
 et al., “
Spatial concentration distribution analysis of cells in electrode-multilayered microchannel by dielectric property measurement
,”
Biomicrofluidics
9
(
4
),
044129
(
2015
).
24.
J.
Yao
,
M.
Sugawara
,
H.
Obara
 et al., “
Distinct motion of GFP-tagged histone expressing cells under AC electrokinetics in electrode-multilayered microfluidic device
,”
IEEE Trans. Biomed. Circuits Syst.
11
(
6
),
1450
1458
(
2017
).
25.
X.
Liu
,
Y.
Jiafeng
,
Z.
Tong
 et al., “
Image reconstruction under contact impedance effect in micro electrical impedance tomography sensors
,”
IEEE Trans. Biomed. Circuits Syst.
12
(
3
),
623
631
(
2018
).
26.
J.
Guo
,
Y.
Kang
, and
Y.
Ai
, “
Disposable microfluidic channel with dielectric layer on PCB for AC sensing of biological cells
,”
IEEE Trans. Dielectr. Electr. Insul.
22
(
3
),
1439
1443
(
2015
).
27.
J.
Yao
,
A.
Sapkota
,
H.
Konno
 et al., “
Noninvasive online measurement of particle size and concentration in liquid–particle mixture by estimating equivalent circuit of electrical double layer
,”
Part. Sci. Technol.
34
(
5
),
517
525
(
2015
).
28.
K.
Cheung
,
S.
Gawad
, and
P.
Renaud
, “
Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation
,”
Cytometry, Part A
65A
(
2
),
124
132
(
2005
).
29.
E. W. M.
Kemna
,
L. I.
Segerink
,
F.
Wolbers
 et al., “
Label-free, high-throughput, electrical detection of cells in droplets
,”
Analyst
138
(
16
),
4585
4592
(
2013
).
30.
S. L.
Carson
,
M. E.
Orazem
,
O. D.
Crisalle
 et al., “
On the error structure of impedance measurements
,”
J. Electrochem. Soc.
150
(
10
),
477
490
(
2003
).
31.
D.
Zhang
, “
A coefficient of determination for generalized linear models
,”
Am. Statistician
71
(
4
),
310
316
(
2017
).
32.
L.
Magee
, “
R2 measures based on Wald and Likelihood ratio joint significance tests
,”
Am. Statistician
44
(
3
),
250
253
(
1990
).
33.
J. G.
Liao
and
D.
McGee
, “
Adjusted coefficients of determination for logistic regression
,”
Am. Statistician
57
(
3
),
161
165
(
2003
).
34.
H.
Bar-Gera
, “
The target parameter of adjusted R-squared in fixed-design experiments
,”
Am. Statistician
71
(
2
),
112
119
(
2017
).
35.
G.
Schade-Kampmann
,
A.
Huwiler
,
M.
Hebeisen
 et al., “
On-chip non-invasive and label-free cell discrimination by impedance spectroscopy
,”
Cell Prolif.
41
(
5
),
830
840
(
2008
).
You do not currently have access to this content.