Laboratory astrochemistry aims at simulating, in the laboratory, some of the chemical and physical processes that operate in different regions of the universe. Amongst the diverse astrochemical problems that can be addressed in the laboratory, the evolution of cosmic dust grains in different regions of the interstellar medium (ISM) and its role in the formation of new chemical species through catalytic processes present significant interest. In particular, the dark clouds of the ISM dust grains are coated by icy mantles and it is thought that the ice–dust interaction plays a crucial role in the development of the chemical complexity observed in space. Here, we present a new ultra-high vacuum experimental station devoted to simulating the complex conditions of the coldest regions of the ISM. The INFRA-ICE machine can be operated as a standing alone setup or incorporated in a larger experimental station called Stardust, which is dedicated to simulate the formation of cosmic dust in evolved stars. As such, INFRA-ICE expands the capabilities of Stardust allowing the simulation of the complete journey of cosmic dust in space, from its formation in asymptotic giant branch stars to its processing and interaction with icy mantles in molecular clouds. To demonstrate some of the capabilities of INFRA-ICE, we present selected results on the ultraviolet photochemistry of undecane (C11H24) at 14 K. Aliphatics are part of the carbonaceous cosmic dust, and recently, aliphatics and short n-alkanes have been detected in situ in the comet 67P/Churyumov–Gerasimenko.

1.
A.
Canosa
,
I. R.
Sims
,
D.
Travers
,
I. W. M.
Smith
, and
B. R.
Rowe
, “
Reactions of the methylidine radical with CH4, C2H2, C2H4, C2H6, and but-1-ene studied between 23 and 295K with a CRESU apparatus
,”
Astron. Astrophys.
323
,
644
651
(
1997
).
2.
M.
Antiñolo
,
M.
Agúndez
,
E.
Jiménez
,
B.
Ballesteros
,
A.
Canosa
,
G. E.
Dib
,
J.
Albaladejo
, and
J.
Cernicharo
, “
Reactivity of OH and CH(3)OH between 22 and 64 K: modelling the gas phase production of CH(3)O in Barnard 1B
,”
Astrophys. J.
823
,
25
(
2016
).
3.
A.
Potapov
,
A.
Canosa
,
E.
Jiménez
, and
B.
Rowe
, “
Uniform supersonic chemical reactors: 30 years of astrochemical history and future challenges
,”
Angew. Chem., Int. Ed.
56
,
8618
8640
(
2017
).
4.
I.
Tanarro
,
B.
Alemán
,
P.
de Vicente
,
J. D.
Gallego
,
J. R.
Pardo
,
G.
Santoro
,
K.
Lauwaet
,
F.
Tercero
,
A.
Díaz-Pulido
,
E.
Moreno
,
M.
Agúndez
,
J. R.
Goicoechea
,
J. M.
Sobrado
,
J. A.
López
,
L.
Martínez
,
J. L.
Doménech
,
V. J.
Herrero
,
J. M.
Hernández
,
R. J.
Peláez
,
J. A.
López-Pérez
,
J.
Gómez-González
,
J. L.
Alonso
,
E.
Jiménez
,
D.
Teyssier
,
K.
Makasheva
,
M.
Castellanos
,
C.
Joblin
,
J. A.
Martín-Gago
, and
J.
Cernicharo
, “
Using radio astronomical receivers for molecular spectroscopic characterization in astrochemical laboratory simulations: A proof of concept
,”
Astron. Astrophys.
609
,
A15
(
2018
).
5.
J.
Cernicharo
,
J. D.
Gallego
,
J. A.
López-Pérez
,
F.
Tercero
,
I.
Tanarro
,
F.
Beltrán
,
P.
de Vicente
,
K.
Lauwaet
,
B.
Alemán
,
E.
Moreno
,
V. J.
Herrero
,
J. L.
Doménech
,
S. I.
Ramírez
,
C.
Bermúdez
,
R. J.
Peláez
,
M.
Patino-Esteban
,
I.
López-Fernández
,
S.
García-Álvaro
,
P.
García-Carreño
,
C.
Cabezas
,
I.
Malo
,
R.
Amils
,
J.
Sobrado
,
C.
Diez-González
,
J. M.
Hernandéz
,
B.
Tercero
,
G.
Santoro
,
L.
Martínez
,
M.
Castellanos
,
B.
Vaquero Jiménez
,
J. R.
Pardo
,
L.
Barbas
,
J. A.
López-Fernández
,
B.
Aja
,
A.
Leuther
, and
J. A.
Martín-Gago
, “
Broad-band high-resolution rotational spectroscopy for laboratory astrophysics
,”
Astron. Astrophys.
626
,
A34
(
2019
).
6.
J. M.
Sobrado
,
J.
Martín-Soler
, and
J. A.
Martín-Gago
, “
Mimicking mars: A vacuum simulation chamber for testing environmental instrumentation for mars exploration
,”
Rev. Sci. Instrum.
85
,
035111
(
2014
).
7.
J. M.
Sobrado
,
J.
Martín-Soler
, and
J. A.
Martín-Gago
, “
Mimicking martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the curiosity rover
,”
Rev. Sci. Instrum.
86
,
105113
(
2015
).
8.
D.
Romanini
,
L.
Biennier
,
F.
Salama
,
A.
Kachanov
,
L. J.
Allamandola
, and
F.
Stoeckel
, “
Jet-discharge cavity ring-down spectroscopy of ionized polycyclic aromatic hydrocarbons: Progress in testing the pah hypothesis for the diffuse interstellar band problem
,”
Chem. Phys. Lett.
303
,
165
170
(
1999
).
9.
P.
Bréchignac
and
T.
Pino
, “
Electronic spectra of cold gas phase PAH cations: Towards the identification of the Diffuse Interstellar Bands carriers
,”
Astron. Astrophys.
343
,
L49
L52
(
1999
).
10.
C.
Joblin
,
C.
Pech
,
M.
Armengaud
,
P.
Frabel
, and
P.
Boissel
, “
A piece of interstellar medium in the laboratory: The PIRENEA experiment
,”
EAS Publ. Ser.
4
,
73
(
2002
).
11.
L.
Biennier
,
F.
Salama
,
L. J.
Allamandola
, and
J. J.
Scherer
, “
Pulsed discharge nozzle cavity ringdown spectroscopy of cold polycyclic aromatic hydrocarbon ions
,”
J. Chem. Phys.
118
,
7863
7872
(
2003
).
12.
R. I.
Kaiser
and
Y.
Osamura
, “
Infrared spectroscopic studies of hydrogenated silicon clusters. Guiding the search for Si2Hx species in the Circumstellar Envelope of IRC+10216
,”
Astron. Astrophys.
432
,
559
566
(
2005
).
13.
F.
Useli-Bacchitta
,
A.
Bonnamy
,
G.
Mulas
,
G.
Malloci
,
D.
Toublanc
, and
C.
Joblin
, “
Visible photodissociation spectroscopy of PAH cations and derivatives in the PIRENEA experiment
,”
Chem. Phys.
371
,
16
23
(
2010
).
14.
O.
Asvany
,
F.
Bielau
,
D.
Moratschke
,
J.
Krause
, and
S.
Schlemmer
, “
Note: New design of a cryogenic linear radio frequency multipole trap
,”
Rev. Sci. Instrum.
81
,
076102
(
2010
).
15.
E. K.
Campbell
and
J. P.
Maier
, “
Perspective: C+60 and laboratory spectroscopy related to diffuse interstellar bands
,”
J. Chem. Phys.
146
,
160901
(
2017
).
16.
J. L.
Doménech
,
S.
Schlemmer
, and
O.
Asvany
, “
Accurate rotational rest frequencies for ammonium ion isotopologues
,”
Astrophys. J.
866
,
158
(
2018
).
17.
J. M.
Fernández
,
G.
Tejeda
,
M.
Carvajal
, and
M. L.
Senent
, “
New spectral characterization of dimethyl ether isotopologues CH3OCH3 and 13CH3OCH3 in the THz region
,”
Astrophys. J. Suppl. Ser.
241
,
13
(
2019
).
18.
C.
Jäger
,
F.
Huisken
,
H.
Mutschke
,
I. L.
Jansa
, and
T.
Henning
, “
Formation of polycyclic aromatic hydrocarbons and carbonaceous solids in gas-phase condensation experiments
,”
Astrophys. J.
696
,
706
712
(
2009
).
19.
C. S.
Contreras
and
F.
Salama
, “
Laboratory investigations of polycyclic aromatic hydrocarbon formation and destruction in the circumstellar outflows of carbon stars
,”
Astrophys. J. Suppl. Ser.
208
,
6
(
2013
).
20.
L.
Martínez
,
G.
Santoro
,
P.
Merino
,
M.
Accolla
,
K.
Lauwaet
,
J.
Sobrado
,
H.
Sabbah
,
R. J.
Pelaez
,
V. J.
Herrero
,
I.
Tanarro
,
M.
Agúndez
,
A.
Martín-Jimenez
,
R.
Otero
,
G. J.
Ellis
,
C.
Joblin
,
J.
Cernicharo
, and
J. A.
Martín-Gago
, “
Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes
,”
Nat. Astron.
4
,
97
105
(
2020
).
21.
G.
Santoro
,
L.
Martínez
,
K.
Lauwaet
,
M.
Accolla
,
G.
Tajuelo-Castilla
,
P.
Merino
,
J. M.
Sobrado
,
R. J.
Peláez
,
V. J.
Herrero
,
I.
Tanarro
,
Á.
Mayoral
,
M.
Agúndez
,
H.
Sabbah
,
C.
Joblin
,
J.
Cernicharo
, and
J. Á.
Martín-Gago
, “
The chemistry of cosmic dust analogs from C, C2, and C2H2 in C-rich circumstellar envelopes
,”
Astrophys. J.
895
,
97
(
2020
).
22.
J. E.
Roser
,
G.
Vidali
,
G.
Manicò
, and
V.
Pirronello
, “
formation of carbon dioxide by surface reactions on ices in the interstellar medium
,”
Astrophys. J.
555
,
L61
L64
(
2001
).
23.
V.
Mennella
,
G. A.
Baratta
,
M. E.
Palumbo
, and
E. A.
Bergin
, “
Synthesis of CO and CO2 molecules by UV irradiation of water ice-covered hydrogenated carbon grains
,”
Astrophys. J.
643
,
923
931
(
2006
).
24.
Y.
Oba
,
N.
Miyauchi
,
H.
Hidaka
,
T.
Chigai
,
N.
Watanabe
, and
A.
Kouchi
, “
Formation of compact amorphous H2O ice by codeposition of hydrogen atoms with oxygen molecules on grain surfaces
,”
Astrophys. J.
701
,
464
470
(
2009
).
25.
M. E.
Palumbo
,
G. A.
Baratta
,
G.
Leto
, and
G.
Strazzulla
, “
H bonds in astrophysical ices
,”
J. Mol. Struct.
972
,
64
67
(
2010
).
26.
G. M.
Muñoz Caro
,
A.
Jiménez-Escobar
,
J. Á.
Martín-Gago
,
C.
Rogero
,
C.
Atienza
,
S.
Puertas
,
J. M.
Sobrado
, and
J.
Torres-Redondo
, “
New results on thermal and photodesorption of CO ice using the novel InterStellar Astrochemistry Chamber (ISAC)
,”
Astron. Astrophys.
522
,
A108
(
2010
).
27.
H.
Linnartz
,
S.
Ioppolo
, and
G.
Fedoseev
, “
Atom addition reactions in interstellar ice analogues
,”
Int. Rev. Phys. Chem.
34
,
205
237
(
2015
).
28.
D.
Fulvio
,
G.
Sandor
,
C.
Jager
,
K.
Akos
, and
T.
Henning
, “
Laboratory experiments on the low-temperature formation of carbonaceous grains in the ISM
,”
Astrophys. J. Suppl. Ser.
233
,
11
(
2017
).
29.
R. L.
Hudson
,
M. J.
Loeffler
, and
K. M.
Yocum
, “
Laboratory investigations into the spectra and origin of propylene oxide: A chiral interstellar molecule
,”
Astrophys. J.
835
,
225
(
2017
).
30.
A.
Potapov
,
C.
Jäger
, and
T.
Henning
, “
Photodesorption of water ice from dust grains and thermal desorption of cometary ices studied by the INSIDE experiment
,”
Astrophys. J.
880
,
12
(
2019
).
31.
Y.
Oba
,
Y.
Takano
,
H.
Naraoka
,
N.
Watanabe
, and
A.
Kouchi
, “
Nucleobase synthesis in interstellar ices
,”
Nat. Commun.
10
,
4413
(
2019
).
32.
A. C. A.
Boogert
,
P. A.
Gerakines
, and
D. C. B.
Whittet
, “
Observations of the Icy Universe
,”
Annu. Rev. Astron. Astrophys.
53
,
541
581
(
2015
).
33.
G.
Pascoli
and
A.
Polleux
, “
Condensation and growth of hydrogenated carbon clusters in carbon-rich stars
,”
Astron. Astrophys.
359
,
799
810
(
2000
).
34.
G.
Vidali
, “
H2 formation on interstellar grains
,”
Chem. Rev.
113
,
8762
8782
(
2013
).
35.
D. A.
Williams
and
C.
Cecchi-Pestellini
, “
Chapter 8 catalysis on the surfaces of bare dust grains
,” in
The Chemistry of Cosmic Dust
(
The Royal Society of Chemistry
,
2016
), pp.
157
196
.
36.
V.
Wakelam
,
E.
Bron
,
S.
Cazaux
,
F.
Dulieu
,
C.
Gry
,
P.
Guillard
,
E.
Habart
,
L.
Hornekær
,
S.
Morisset
,
G.
Nyman
,
V.
Pirronello
,
S. D.
Price
,
V.
Valdivia
,
G.
Vidali
, and
N.
Watanabe
, “
H2 formation on interstellar dust grains: The viewpoints of theory, experiments, models and observations
,”
Mol. Astrophys.
9
,
1
36
(
2017
).
37.
L. J.
Allamandola
,
M. P.
Bernstein
,
S. A.
Sandford
, and
R. L.
Walker
, “
Evolution of interstellar ices
,”
Space Sci. Rev.
90
,
219
232
(
1999
).
38.
G.
Strazzulla
,
G. A.
Baratta
, and
M. E.
Palumbo
, “
Vibrational spectroscopy of ion-irradiated ices
,”
Spectrochim. Acta, Part A
57
,
825
842
(
2001
).
39.
R. E.
Johnson
, “
Sputtering and desorption from icy surfaces
,” in
Solar System Ices
, edited by
B.
Schmitt
,
C.
De Bergh
, and
M.
Festou
(
Springer Netherlands
,
Dordrecht
,
1998
), pp.
303
334
.
40.
K. I.
Öberg
, “
Photochemistry and astrochemistry: Photochemical pathways to interstellar complex organic molecules
,”
Chem. Rev.
116
,
9631
9663
(
2016
).
41.
G. M.
Muñoz Caro
,
U. J.
Meierhenrich
,
W. A.
Schutte
,
B.
Barbier
,
A.
Arcones Segovia
,
H.
Rosenbauer
,
W. H.-P.
Thiemann
,
A.
Brack
, and
J. M.
Greenberg
, “
Amino acids from ultraviolet irradiation of interstellar ice analogues
,”
Nature
416
,
403
406
(
2002
).
42.
C.
Meinert
,
I.
Myrgorodska
,
P.
de Marcellus
,
T.
Buhse
,
L.
Nahon
,
S. V.
Hoffmann
,
L. L. S.
d’Hendecourt
, and
U. J.
Meierhenrich
, “
Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs
,”
Science
352
,
208
212
(
2016
).
43.
G.
Tarczay
,
M.
Förstel
,
P.
Maksyutenko
, and
R. I.
Kaiser
, “
Formation of higher silanes in low-temperature silane (SiH4) ices
,”
Inorg. Chem.
55
,
8776
8785
(
2016
).
44.
S.
Esmaili
,
A. D.
Bass
,
P.
Cloutier
,
L.
Sanche
, and
M. A.
Huels
, “
Glycine formation in CO2:CH4:NH3 ices induced by 0-70 eV electrons
,”
J. Chem. Phys.
148
,
164702
(
2018
).
45.
P.
Merino
,
M.
Švec
,
J. I.
Martinez
,
P.
Jelinek
,
P.
Lacovig
,
M.
Dalmiglio
,
S.
Lizzit
,
P.
Soukiassian
,
J.
Cernicharo
, and
J. A.
Martin-Gago
, “
Graphene etching on SiC grains as a path to interstellar polycyclic aromatic hydrocarbons formation
,”
Nat. Commun.
5
,
3054
(
2014
).
46.
H. J.
Fraser
and
E. F.
van Dishoeck
, “
Surfreside: A novel experiment to study surface chemistry under interstellar and protostellar conditions
,”
Adv. Space Res.
33
,
14
22
(
2004
).
47.
S.
Ioppolo
,
G.
Fedoseev
,
T.
Lamberts
,
C.
Romanzin
, and
H.
Linnartz
, “
SURFRESIDE2: An ultrahigh vacuum system for the investigation of surface reaction routes of interstellar interest
,”
Rev. Sci. Instrum.
84
,
073112
(
2013
).
48.
A.
Potapov
,
P.
Theulé
,
C.
Jäger
, and
T.
Henning
, “
Evidence of surface catalytic effect on cosmic dust grain analogs: The ammonia and carbon dioxide surface reaction
,”
Astrophys. J.
878
,
L20
(
2019
).
49.
A.
Potapov
,
C.
Jäger
, and
T.
Henning
, “
Ice coverage of dust grains in cold astrophysical environments
,”
Phys. Rev. Lett.
124
,
221103
(
2020
).
50.
L.
Martínez
,
K.
Lauwaet
,
G.
Santoro
,
J. M.
Sobrado
,
R. J.
Peláez
,
V. J.
Herrero
,
I.
Tanarro
,
G. J.
Ellis
,
J.
Cernicharo
,
C.
Joblin
,
Y.
Huttel
, and
J. A.
Martín-Gago
, “
Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles
,”
Sci. Rep.
8
,
7250
(
2018
).
51.
J. E.
Chiar
,
A. G. G. M.
Tielens
,
D. C. B.
Whittet
,
W. A.
Schutte
,
A. C. A.
Boogert
,
D.
Lutz
,
E. F.
van Dishoeck
, and
M. P.
Bernstein
, “
The composition and distribution of dust along the line of sight toward the galactic center
,”
Astrophys. J.
537
,
749
762
(
2000
).
52.
Y. J.
Pendleton
and
L. J.
Allamandola
, “
The organic refractory material in the diffuse interstellar medium: Mid-infrared spectroscopic constraints
,”
Astrophys. J. Suppl. Ser.
138
,
75
98
(
2002
).
53.
B.
Günay
,
M. G.
Burton
,
M.
Afşar
, and
T. W.
Schmidt
, “
A method for mapping the aliphatic hydrocarbon content of interstellar dust towards the Galactic Centre
,”
Mon. Not. R. Astron. Soc.
493
,
1109
1119
(
2020
).
54.
L. P.
Keller
,
S.
Bajt
,
G. A.
Baratta
,
J.
Borg
,
J. P.
Bradley
,
D. E.
Brownlee
,
H.
Busemann
,
J. R.
Brucato
,
M.
Burchell
,
L.
Colangeli
,
L.
d’Hendecourt
,
Z.
Djouadi
,
G.
Ferrini
,
G.
Flynn
,
I. A.
Franchi
,
M.
Fries
,
M. M.
Grady
,
G. A.
Graham
,
F.
Grossemy
,
A.
Kearsley
,
G.
Matrajt
,
K.
Nakamura-Messenger
,
V.
Mennella
,
L.
Nittler
,
M. E.
Palumbo
,
F. J.
Stadermann
,
P.
Tsou
,
A.
Rotundi
,
S. A.
Sandford
,
C.
Snead
,
A.
Steele
,
D.
Wooden
, and
M.
Zolensky
, “
Infrared spectroscopy of comet 81P/wild 2 samples returned by stardust
,”
Science
314
,
1728
1731
(
2006
).
55.
A.
Raponi
,
M.
Ciarniello
,
F.
Capaccioni
,
V.
Mennella
,
G.
Filacchione
,
V.
Vinogradoff
,
O.
Poch
,
P.
Beck
,
E.
Quirico
,
M. C.
De Sanctis
,
L. V.
Moroz
,
D.
Kappel
,
S.
Erard
,
D.
Bockelée-Morvan
,
A.
Longobardo
,
F.
Tosi
,
E.
Palomba
,
J.-P.
Combe
,
B.
Rousseau
,
G.
Arnold
,
R. W.
Carlson
,
A.
Pommerol
,
C.
Pilorget
,
S.
Fornasier
,
G.
Bellucci
,
A.
Barucci
,
F.
Mancarella
,
M.
Formisano
,
G.
Rinaldi
,
I.
Istiqomah
, and
C.
Leyrat
, “
Infrared detection of aliphatic organics on a cometary nucleus
,”
Nat. Astron.
4
,
500
505
(
2020
).
56.
M.
Schuhmann
,
K.
Altwegg
,
H.
Balsiger
,
J.-J.
Berthelier
,
J.
De Keyser
,
B.
Fiethe
,
S. A.
Fuselier
,
S.
Gasc
,
T. I.
Gombosi
,
N.
Hänni
,
M.
Rubin
,
C.-Y.
Tzou
, and
S. F.
Wampfler
, “
Aliphatic and aromatic hydrocarbons in comet 67P/Churyumov-Gerasimenko seen by ROSINA
,”
Astron. Astrophys.
630
,
A31
(
2019
).
57.
H.
Haberland
,
M.
Karrais
, and
M.
Mall
, “
A new type of cluster and cluster ion source
,”
Z. Phys. D
20
,
413
415
(
1991
).
58.
L.
Martínez
,
M.
Díaz
,
E.
Román
,
M.
Ruano
,
D.
Llamosa P.
, and
Y.
Huttel
, “
Generation of nanoparticles with adjustable size and controlled stoichiometry: Recent advances
,”
Langmuir
28
,
11241
11249
(
2012
).
59.
B. L.
Frey
,
R. M.
Corn
, and
S. C.
Weibel
, “
Polarization-modulation approaches to reflection-absorption spectroscopy
,” in
Handbook of Vibrational Spectroscopy
(
John Wiley & Sons, Ltd.
,
2006
), pp.
1042
1056
.
60.
M. C.
Boyer
,
N.
Rivas
,
A. A.
Tran
,
C. A.
Verish
, and
C. R.
Arumainayagam
, “
The role of low-energy (≤20 eV) electrons in astrochemistry
,”
Surf. Sci.
652
,
26
32
(
2016
).
61.
K. E.
Shulenberger
,
J. L.
Zhu
,
K.
Tran
,
S.
Abdullahi
,
C.
Belvin
,
J.
Lukens
,
Z.
Peeler
,
E.
Mullikin
,
H. M.
Cumberbatch
,
J.
Huang
,
K.
Regovich
,
A.
Zhou
,
L.
Heller
,
M.
Markovic
,
L.
Gates
,
C.
Buffo
,
R.
Tano-Menka
,
C. R.
Arumainayagam
,
E.
Böhler
,
P.
Swiderek
,
S.
Esmaili
,
A. D.
Bass
,
M.
Huels
, and
L.
Sanche
, “
Electron-induced radiolysis of astrochemically relevant ammonia ices
,”
ACS Earth Space Chem.
3
,
800
810
(
2019
).
62.
P.
Jenniskens
,
G. A.
Baratta
,
A.
Kouchi
,
M. S.
de Groot
,
J. M.
Greenberg
, and
G.
Strazzulla
, “
Carbon dust formation on interstellar grains
,”
Astron. Astrophys.
273
,
583
(
1993
).
63.
Y.-J.
Chen
,
K.-J.
Chuang
,
G. M. M.
Caro
,
M.
Nuevo
,
C.-C.
Chu
,
T.-S.
Yih
,
W.-H.
Ip
, and
C.-Y. R.
Wu
, “
Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice
,”
Astrophys. J.
781
,
15
(
2014
).
64.
G. A.
Baratta
,
G.
Leto
, and
M. E.
Palumbo
, “
A comparison of ion irradiation and UV photolysis of CH4 and CH3OH
,”
Astron. Astrophys.
384
,
343
349
(
2002
).
65.
D.
Fulvio
,
A. C.
Brieva
,
S. H.
Cuylle
,
H.
Linnartz
,
C.
Jäger
, and
T.
Henning
, “
A straightforward method for vacuum-ultraviolet flux measurements: The case of the hydrogen discharge lamp and implications for solid-phase actinometry
,”
Appl. Phys. Lett.
105
,
014105
(
2014
).
66.
B. D.
Teolis
,
M.
Famá
, and
R. A.
Baragiola
, “
Low density solid ozone
,”
J. Chem. Phys.
127
,
074507
(
2007
).
67.
H. J.
Kuhn
,
S. E.
Braslavsky
, and
R.
Schmidt
, “
Chemical actinometry (IUPAC technical report)
,”
Pure Appl. Chem.
76
,
2105
2146
(
2004
).
68.
R.
Martín-Doménech
,
J.
Manzano-Santamaría
,
G. M.
Muñoz Caro
,
G. A.
Cruz-Díaz
,
Y.-J.
Chen
,
V. J.
Herrero
, and
I.
Tanarro
, “
UV photoprocessing of CO2 ice: A complete quantification of photochemistry and photon-induced desorption processes
,”
Astron. Astrophys.
584
,
A14
(
2015
).
69.
H.
Cottin
,
M. H.
Moore
, and
Y.
Benilan
, “
Photodestruction of relevant interstellar molecules in ice mixtures
,”
Astrophys. J.
590
,
874
881
(
2003
).
70.
P. A.
Gerakines
,
W. A.
Schutte
, and
P.
Ehrenfreund
, “
Ultraviolet processing of interstellar ice analogs. I. Pure ices
,”
Astron. Astrophys.
312
,
289
305
(
1996
).
71.
M.
Accolla
,
E.
Congiu
,
F.
Dulieu
,
G.
Manicò
,
H.
Chaabouni
,
E.
Matar
,
H.
Mokrane
,
J. L.
Lemaire
, and
V.
Pirronello
, “
Changes in the morphology of interstellar ice analogues after hydrogen atom exposure
,”
Phys. Chem. Chem. Phys.
13
,
8037
8045
(
2011
).
72.
R. G.
Snyder
,
S. L.
Hsu
, and
S.
Krimm
, “
Vibrational spectra in the C-H stretching region and the structure of the polymethylene chain
,”
Spectrochimi. Acta, Part A
34
,
395
406
(
1978
).
73.
R. G.
Snyder
and
J. H.
Schachtschneider
, “
Vibrational analysis of the n-paraffins—I: Assignments of infrared bands in the spectra of C3H8 through n-C19H40
,”
Spectrochimica Acta
19
,
85
116
(
1963
).
74.
G.
Socrates
, in
Infrared and Raman Characteristic Group Frequencies
, edited by
J. W. S.
Ltd
(
John Wiley & Sons
,
2001
).
75.
J. R.
McNesby
and
H.
Okabe
, “
Vacuum ultraviolet photochemistry
,” in
Advances in Photochemistry
(
John Wiley & Sons, Ltd
,
2007
), pp.
157
240
.
76.
NIST Mass Spectrometry Data Center
, “
Mass spectra
,” in
NIST Chemistry Webbook, NIST Standard Reference Database Number 69
(
National Institute of Standards and Technology
,
2020
).
You do not currently have access to this content.