Photoelectron momentum microscopy is an emerging powerful method for angle-resolved photoelectron spectroscopy (ARPES), especially in combination with imaging spin filters. These instruments record kx–ky images, typically exceeding a full Brillouin zone. As energy filters, double-hemispherical or time-of-flight (ToF) devices are in use. Here, we present a new approach for momentum mapping of the full half-space, based on a large single hemispherical analyzer (path radius of 225 mm). Excitation by an unfocused He lamp yielded an energy resolution of 7.7 meV. The performance is demonstrated by k-imaging of quantum-well states in Au and Xe multilayers. The α2-aberration term (α, entrance angle in the dispersive plane) and the transit-time spread of the electrons in the spherical field are studied in a large pass-energy (6 eV–660 eV) and angular range (α up to ±7°). It is discussed how the method circumvents the preconditions of previous theoretical work on the resolution limitation due to the α2-term and the transit-time spread, being detrimental for time-resolved experiments. Thanks to k-resolved detection, both effects can be corrected numerically. We introduce a dispersive-plus-ToF hybrid mode of operation, with an imaging ToF analyzer behind the exit slit of the hemisphere. This instrument captures 3D data arrays I (EB, kx, ky), yielding a gain up to N2 in recording efficiency (N being the number of resolved time slices). A key application will be ARPES at sources with high pulse rates such as synchrotrons with 500 MHz time structure.

1.
C.
Tusche
,
A.
Krasyuk
, and
J.
Kirschner
, “
Spin resolved bandstructure imaging with a high resolution momentum microscope
,”
Ultramicroscopy
159
,
520
(
2015
).
2.
K.
Medjanik
,
S. V.
Babenkov
,
S.
Chernov
,
D.
Vasilyev
,
B.
Schönhense
,
C.
Schlueter
,
A.
Gloskovskii
,
Y.
Matveyev
,
W.
Drube
,
H. J.
Elmers
, and
G.
Schönhense
, “
Progress in HAXPES performance combining full-field k-imaging with time-of-flight recording
,”
J. Synchrotron Radiat.
26
,
1996
(
2019
).
3.
O.
Fedchenko
,
A.
Winkelmann
,
K.
Medjanik
,
S.
Babenkov
,
D.
Vasilyev
,
S.
Chernov
,
C.
Schlueter
,
A.
Gloskovskii
,
Y.
Matveyev
,
W.
Drube
,
B.
Schönhense
,
H. J.
Elmers
, and
G.
Schönhense
, “
High-resolution hard-x-ray photoelectron diffraction in a momentum microscope—The model case of graphite
,”
New J. Phys.
21
,
113031
(
2019
).
4.
S.
Babenkov
,
K.
Medjanik
,
D.
Vasilyev
,
S.
Chernov
,
C.
Schlueter
,
A.
Gloskovskii
,
Yu.
Matveyev
,
W.
Drube
,
B.
Schönhense
,
K.
Rossnagel
,
H.-J.
Elmers
, and
G.
Schönhense
, “
High-accuracy bulk electronic bandmapping with eliminated diffraction effects using hard x-ray photoelectron momentum microscopy
,”
Commun. Phys.
2
,
107
(
2019
).
5.
See https://www.specs-group.com/nc/specs/products/detail/astraios-190-2d-cmos/ for Specs Astraios 190; and
T.
Kampen
,
S.
Maehl
,
O.
Schaff
, and
G.
Schönhense
, “
Device and method for electron transfer from a sample to an energy analyzer and electron spectrometer device
,” Patent US 2020-0303177 A1 (
2020
).
6.
B.
Krömker
,
M.
Escher
,
D.
Funnemann
,
D.
Hartung
,
H.
Engelhard
, and
J.
Kirschner
, “
Development of a momentum microscope for time resolved band structure imaging
,”
Rev. Sci. Instrum.
79
,
053702
(
2008
).
7.
M.
Escher
,
N.
Weber
,
M.
Merkel
,
C.
Ziethen
,
P.
Bernhard
,
G.
Schönhense
,
S.
Schmidt
,
F.
Forster
,
F.
Reinert
,
B.
Krömker
, and
D.
Funnemann
, “
NanoESCA: A novel energy filter for imaging x-ray photoemission spectroscopy
,”
J. Phys.: Condens. Matter
17
,
S1329
(
2005
).
8.
M.
Escher
,
N.
Weber
,
M.
Merkel
,
B.
Krömker
,
D.
Funnemann
,
S.
Schmidt
,
F.
Reinert
,
F.
Forster
,
S.
Hüfner
,
P.
Bernhard
,
C.
Ziethen
,
H. J.
Elmers
, and
G.
Schönhense
, “
NanoESCA: Imaging UPS and XPS with high energy resolution
,”
J. Electron Spectrosc. Relat. Phenom.
144-147
,
1179
1182
(
2005
).
9.
C.
Tusche
,
Y.-J.
Chen
,
C. M.
Schneider
, and
J.
Kirschner
, “
Imaging properties of hemispherical electrostatic energy analyzers for high-resolution momentum microscopy
,”
Ultramicroscopy
206
,
112815
(
2019
).
10.
A. A.
Ünal
,
C.
Tusche
,
S.
Ouazi
,
S.
Wedekind
,
C.-T.
Chiang
,
A.
Winkelmann
,
D.
Sander
,
J.
Henk
, and
J.
Kirschner
, “
Hybridization between the unoccupied Shockley surface state and bulk electronic states on Cu(111)
,”
Phys. Rev. B
84
,
073107
(
2011
).
11.
A.
Cavallin
,
V.
Sevriuk
,
K. N.
Fischer
,
S.
Manna
,
S.
Ouazi
,
M.
Ellguth
,
C.
Tusche
,
H. L.
Meyerheim
,
D.
Sander
, and
J.
Kirschner
, “
Preparation and characterization of Bi2Se3(0001) and of epitaxial FeSe nanocrystals on Bi2Se3(0001)
,”
Surf. Sci.
646
,
72
82
(
2016
).
12.
S.
Roy
,
H. L.
Meyerheim
,
A.
Ernst
,
K.
Mohseni
,
C.
Tusche
,
M. G.
Vergniory
,
T. V.
Menshchikova
,
M. M.
Otrokov
,
A. G.
Ryabishchenkova
,
Z. S.
Aliev
,
M. B.
Babanly
,
K. A.
Kokh
,
O. E.
Tereshchenko
,
E. V.
Chulkov
,
J.
Schneider
, and
J.
Kirschner
, “
Tuning the Dirac point position in Bi2Se3(0001) via surface carbon doping
,”
Phys. Rev. Lett.
113
,
116802
(
2014
).
13.
H. L.
Meyerheim
and
C.
Tusche
, “
Atomic and electronic structure of the clean and adsorbate covered (0001) surface of the topological insulator Bi2Se3
,”
Phys. Status Solidi RRL
12
,
1800078
(
2018
).
14.
S.
Suga
,
C.
Tusche
,
Y.-I.
Matsushita
,
M.
Ellguth
,
A.
Irizawa
, and
J.
Kirschner
, “
Momentum microscopy of the layered semiconductor TiS2 and Ni-intercalated Ni1/3TiS2
,”
New J. Phys.
17
,
083010
(
2015
).
15.
M.
Ellguth
,
C.
Tusche
,
F.
Iga
, and
S.
Suga
, “
Momentum microscopy of single crystals with detailed surface characterization
,”
Philos. Mag.
96
,
3284
(
2016
).
16.
A.
Winkelmann
,
C.
Tusche
,
A.
Akin Ünal
,
M.
Ellguth
,
J.
Henk
, and
J.
Kirschner
, “
Analysis of the electronic structure of copper via two-dimensional photoelectron momentum distribution patterns
,”
New J. Phys.
14
,
043009
(
2012
).
17.
A.
Winkelmann
,
M.
Ellguth
,
C.
Tusche
,
A. A.
Ünal
,
J.
Henk
, and
J.
Kirschner
, “
Momentum-resolved photoelectron interference in crystal surface barrier scattering
,”
Phys. Rev. B
86
,
085427
(
2012
).
18.
C.-T.
Chiang
,
M.
Ellguth
,
F. O.
Schumann
,
C.
Tusche
,
R.
Kraska
,
S.
Förster
, and
W.
Widdra
, “
Electronic band structure of a two-dimensional oxide quasicrystal
,”
Phys. Rev. B
100
,
125149
(
2019
).
19.
A.
Winkelmann
,
A.
Akin Ünal
,
C.
Tusche
,
M.
Ellguth
,
C.-T.
Chiang
, and
J.
Kirschner
, “
Direct k-space imaging of Mahan cones at clean and Bi-covered Cu(111) surfaces
,”
New J. Phys.
14
,
083027
(
2012
).
20.
A. A.
Ünal
,
A.
Winkelmann
,
C.
Tusche
,
F.
Bisio
,
M.
Ellguth
,
C.-T.
Chiang
,
J.
Henk
, and
J.
Kirschner
, “
Polarization dependence and surface sensitivity of linear and nonlinear photoemission from Bi/Cu(111)
,”
Phys. Rev. B
86
,
125447
(
2012
).
21.
M.
Graus
,
M.
Grimm
,
C.
Metzger
,
M.
Dauth
,
C.
Tusche
,
J.
Kirschner
,
S.
Kümmel
,
A.
Schöll
, and
F.
Reinert
, “
Electron-vibration coupling in molecular materials: Assignment of vibronic modes from photoelectron momentum mapping
,”
Phys. Rev. Lett.
116
,
147601
(
2016
).
22.
H.
Spiecker
,
O.
Schmidt
,
C.
Ziethen
,
D.
Menke
,
U.
Kleineberg
,
R. C.
Ahuja
,
M.
Merkel
,
U.
Heinzmann
, and
G.
Schönhense
, “
Time-of-flight photoelectron emission microscopy TOF-PEEM—First results
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
406
,
499
506
(
1998
).
23.
A.
Oelsner
,
O.
Schmidt
,
M.
Schicketanz
,
M.
Klais
,
G.
Schönhense
,
V.
Mergel
,
O.
Jagutzki
, and
H.
Schmidt-Böcking
, “
Microspectroscopy and imaging using a delayline-detector in time-of-flight photoemission microscopy
,”
Rev. Sci. Instrum.
72
,
3968
(
2001
).
24.
G.
Schönhense
,
A.
Oelsner
,
O.
Schmidt
,
G. H.
Fecher
,
V.
Mergel
,
O.
Jagutzki
, and
H.
Schmidt-Böcking
, “
Time-of-flight photoemission electron microscopy—A new way to chemical surface analysis
,”
Surf. Sci.
480
,
180
187
(
2001
).
25.
K.
Medjanik
,
O.
Fedchenko
,
S.
Chernov
,
D.
Kutnyakhov
,
M.
Ellguth
,
A.
Oelsner
,
B.
Schönhense
,
T. R. F.
Peixoto
,
P.
Lutz
,
C.-H.
Min
,
F.
Reinert
,
S.
Däster
,
Y.
Acremann
,
J.
Viefhaus
,
W.
Wurth
,
H. J.
Elmers
, and
G.
Schönhense
, “
Direct 3D mapping of the Fermi surface and Fermi velocity
,”
Nat. Mater.
16
,
615
(
2017
).
26.
S.
Chernov
,
K.
Medjanik
,
D.
Kutnyakhov
,
C.
Tusche
,
S. A.
Nepijko
,
A.
Oelsner
,
J.
Braun
,
J.
Minár
,
S.
Borek
,
H.
Ebert
,
H. J.
Elmers
,
J.
Kirschner
, and
G.
Schönhense
, “
Anomalous d-like surface resonance on Mo(110) analyzed by time-of-flight momentum microscopy
,”
Ultramicroscopy
159
,
463
(
2015
).
27.
H. J.
Elmers
,
D.
Kutnyakhov
,
S. V.
Chernov
,
K.
Medjanik
,
O.
Fedchenko
,
A.
Zaporozhchenko-Zymakova
,
M.
Ellguth
,
C.
Tusche
,
J.
Viefhaus
, and
G.
Schönhense
, “
Hosting of surface states in spin-orbit induced projected bulk band gaps of W(110) and Ir(111)
,”
J. Phys.: Condens. Matter
29
,
255001
(
2017
).
28.
C.
Tusche
,
P.
Goslawski
,
D.
Kutnyakhov
,
M.
Ellguth
,
K.
Medjanik
,
H. J.
Elmers
,
S.
Chernov
,
R.
Wallauer
,
D.
Engel
,
A.
Jankowiak
, and
G.
Schönhense
, “
Multi-MHz time-of-flight electronic bandstructure imaging of graphene on Ir(111)
,”
Appl. Phys. Lett.
108
,
261602
(
2016
).
29.
A.
Zaporozhchenko-Zymaková
,
D.
Kutnyakhov
,
K.
Medjanik
,
C.
Tusche
,
O.
Fedchenko
,
S.
Chernov
,
M.
Ellguth
,
S. A.
Nepijko
,
H. J.
Elmers
, and
G.
Schönhense
, “
Observation of dark lines in k-resolved photoemission from Ir(111) and graphene/Ir(111) via high-resolution time-of-flight momentum microscopy
,”
Phys. Rev. B
96
,
155108
(
2017
).
30.
M.
Lehr
,
B.
Foerster
,
M.
Schmitt
,
K.
Krüger
,
C.
Sönnichsen
,
G.
Schönhense
, and
H.-J.
Elmers
, “
Momentum distribution of electrons emitted from resonantly excited individual gold nanorods
,”
Nano Lett.
17
,
6606
6612
(
2017
).
31.
O.
Fedchenko
,
K.
Medjanik
,
S.
Chernov
,
D.
Kutnyakhov
,
M.
Ellguth
,
A.
Oelsner
,
B.
Schönhense
,
T. R. F.
Peixoto
,
P.
Lutz
,
C.-H.
Min
,
F.
Reinert
,
S.
Däster
,
Y.
Acremann
,
J.
Viefhaus
,
W.
Wurth
,
J.
Braun
,
J.
Minár
,
H.
Ebert
,
H. J.
Elmers
, and
G.
Schönhense
, “
4D texture of circular dichroism in soft-x-ray photoemission from tungsten
,”
New J. Phys.
21
,
013017
(
2019
).
32.
O.
Fedchenko
,
A.
Winkelmann
,
S.
Chernov
,
K.
Medjanik
,
S.
Babenkov
,
S. Y.
Agustsson
,
D.
Vasilyev
,
M.
Hoesch
,
H.-J.
Elmers
, and
G.
Schönhense
, “
Emitter-site specificity of hard x-ray photoelectron Kikuchi-diffraction
,”
New J. Phys.
22
,
103002
(
2020
).
33.
G.
Schönhense
,
K.
Medjanik
,
S.
Babenkov
,
D.
Vasilyev
,
M.
Ellguth
,
O.
Fedchenko
,
S.
Chernov
,
B.
Schönhense
, and
H.-J.
Elmers
, “
Momentum-transfer model of valence-band photoelectron diffraction
,”
Commun. Phys.
3
,
45
(
2020
).
34.
S. Y.
Agustsson
,
S. V.
Chernov
,
K.
Medjanik
,
S.
Babenkov
,
O.
Fedchenko
,
D.
Vasilyev
,
C.
Schlueter
,
A.
Gloskovskii
,
Yu.
Matveyev
,
K.
Kliemt
,
C.
Krellner
,
J.
Demsar
,
G.
Schönhense
, and
H. J.
Elmers
, “
Temperature-dependent Fermi surface in the Kondo lattice system YbRh2Si2
” (submitted) (
2020
).
35.
K.
Medjanik
,
O.
Fedchenko
,
O.
Yastrubchak
,
J.
Sadowski
,
L.
Gluba
,
D.
Vasilyev
,
S.
Babenkov
,
S.
Chernov
,
A.
Winkelmann
,
H. J.
Elmers
, and
G.
Schönhense
, “
Hard x-ray photoelectron momentum microscopy and Kikuchi-diffraction on InGaMnAs thin films
,”
Phys. Rev. B
, arXiv:2010.12359 (
2020
).
36.
D.
Kutnyakhov
,
R. P.
Xian
,
M.
Dendzik
,
M.
Heber
,
F.
Pressacco
,
S. Y.
Agustsson
,
L.
Wenthaus
,
H.
Meyer
,
S.
Gieschen
,
G.
Mercurio
,
A.
Benz
,
K.
Bühlman
,
S.
Däster
,
R.
Gort
,
D.
Curcio
,
K.
Volckaert
,
M.
Bianchi
,
C.
Sanders
,
J. A.
Miwa
,
S.
Ulstrup
,
A.
Oelsner
,
C.
Tusche
,
Y.-J.
Chen
,
D.
Vasilyev
,
K.
Medjanik
,
G.
Brenner
,
S.
Dziarzhytski
,
H.
Redlin
,
B.
Manschwetus
,
S.
Dong
,
J.
Hauer
,
L.
Rettig
,
F.
Diekmann
,
K.
Rossnagel
,
J.
Demsar
,
H.-J.
Elmers
,
P.
Hofmann
,
R.
Ernstorfer
,
G.
Schönhense
,
Y.
Acremann
, and
W.
Wurth
, “
Time- and momentum-resolved photo-emission studies using time-of-flight momentum microscopy at a free-electron laser
,”
Rev. Sci. Instrum.
91
,
013109
(
2020
).
37.
R. P.
Xian
,
D.
Kutnyakhov
,
L.
Rettig
,
Y.
Acremann
,
F.
Pressacco
,
S. Y.
Agustsson
,
D.
Curcio
,
M.
Dendzik
,
G.
Brenner
,
H.
Redlin
,
M.
Heber
,
G.
Mercurio
,
S.
Dong
,
J.
Hauer
,
J.
Demsar
,
W.
Wurth
,
P.
Hofmann
,
M.
Scheidgen
, and
R.
Ernstorfer
(
2019
). “
Multidimensional photoemission spectra of tungsten diselenide
,” Zenodo.
38.
M.
Dendzik
,
R. P.
Xian
,
E.
Perfetto
,
D.
Sangalli
,
D.
Kutnyakhov
,
S.
Dong
,
S.
Beaulieu
,
T.
Pincelli
,
F.
Pressacco
,
D.
Curcio
,
S. Y.
Agustsson
,
M.
Heber
,
J.
Hauer
,
W.
Wurth
,
G.
Brenner
,
Y.
Acremann
,
P.
Hofmann
,
M.
Wolf
,
A.
Marini
,
G.
Stefanucci
,
L.
Rettig
, and
R.
Ernstorfer
, “
Observation of an excitonic Mott transition through ultrafast core-cum-conduction photoemission spectroscopy
,”
Phys. Rev. Lett.
125
,
096401
(
2020
).
39.
M.
Scholz
,
K.
Baumgärtner
,
C.
Metzger
,
D.
Kutnyakhov
,
M.
Heber
,
C. H.
Min
,
T. R. F.
Peixoto
,
M.
Reiser
,
C.
Kim
,
W.
Lu
,
R.
Shayduk
,
W. M.
Izquierdo
,
G.
Brenner
,
F.
Roth
,
F.
Pressacco
,
A.
Schöll
,
S.
Molodtsov
,
W.
Wurth
,
F.
Reinert
, and
A.
Madsen
, “
Ultrafast molecular orbital imaging of a pentacene thin film using a free electron laser
,” arXiv:1907.10434 (
2019
).
40.
D.
Curcio
,
K.
Volckaert
,
D.
Kutnyakhov
,
M.
Bianchi
,
J.
Miwa
,
C.
Sanders
,
S.
Ulstrup
,
M.
Heber
,
F.
Pressacco
,
G.
Brenner
,
S.
Agustsson
,
K.
Bühlmann
,
Y.
Acremann
,
J.
Mi
,
M.
Bremholm
,
J.
Demsar
,
W.
Wurth
, and
P.
Hofmann
, “
Imaging of coherent phonons in Bi2Se3 probed by time-resolved photoelectron diffraction
” (unpublished).
41.
F.
Haag
,
T.
Eul
,
P.
Thielen
,
N.
Haag
,
B.
Stadtmüller
, and
M.
Aeschlimann
, “
Time-resolved two-photon momentum microscopy—A new approach to study hot carrier lifetimes in momentum space
,”
Rev. Sci. Instrum.
90
,
103104
(
2019
).
42.
M.
Keunecke
,
C.
Möller
,
D.
Schmitt
,
H.
Nolte
,
G. S. M.
Jansen
,
M.
Reutzel
,
M.
Gutberlet
,
G.
Halasi
,
D.
Steil
,
S.
Steil
, and
S.
Mathias
, “
Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline
,”
Rev. Sci. Instrum.
91
,
063905
(
2020
).
43.
S.
Beaulieu
,
S.
Dong
,
N.
Tancogne-Dejean
,
M.
Dendzik
,
T.
Pincelli
,
J.
Maklar
,
R. P.
Xian
,
M. A.
Sentef
,
M.
Wolf
,
A.
Rubio
,
L.
Rettig
, and
R.
Ernstorfer
, “
Ultrafast light-induced Lifshitz transition
,” arXiv:2003.04059 (
2020
).
44.
J.
Madéo
,
M. K. L.
Man
,
C.
Sahoo
,
M.
Campbell
,
V.
Pareek
,
E. L.
Wong
,
A.
Al Mahboob
,
N. S.
Chan
,
A.
Karmakar
,
B. M. K.
Mariserla
,
X.
Li
,
T. F.
Heinz
,
T.
Cao
, and
K. M.
Dani
, “
Directly visualizing the momentum forbidden dark excitons and their dynamics in atomically thin semiconductors
,” arXiv:2005.00241 (
2020
).
45.
C.
Corder
,
P.
Zhao
,
J.
Bakalis
,
K.
Medjanik
,
G.
Schönhense
,
M. G.
White
, and
T. K.
Allison
, “
Time-resolved ARPES at 88 MHz repetition rate with full 2π electron collection
” (to be published) (
2019
).
46.
S. M.
Jansen
,
M.
Keunecke
,
M.
Düvel
,
C.
Möller
,
D.
Schmitt
,
W.
Bennecke
,
F. J. S.
Kappert
,
D.
Steil
,
D. R.
Luke
,
S.
Steil
, and
S.
Mathias
, “
Sparsity-driven reconstruction of molecular orbitals from angle-resolved photoemission spectroscopy
,” arXiv:2001.10918 (
2020
).
47.
R. P.
Xian
,
L.
Rettig
, and
R.
Ernstorfer
, “
Symmetry-guided nonrigid registration: The case for distortion correction in multidimensional photoemission spectroscopy
,”
Ultramicroscopy
202
,
133
(
2019
).
48.
S.
Suga
and
C.
Tusche
, “
Photoelectron spectroscopy in a wide hν region from 6 eV to 8 keV with full momentum and spin resolution
,”
J. Electron Spectrosc. Relat. Phenom.
200
,
119
142
(
2015
).
49.
M.
Kolbe
,
P.
Lushchyk
,
B.
Petereit
,
H. J.
Elmers
,
G.
Schönhense
,
A.
Oelsner
,
C.
Tusche
, and
J.
Kirschner
, “
Highly efficient multichannel spin-polarization detection
,”
Phys. Rev. Lett.
107
,
207601
(
2011
).
50.
C.
Tusche
,
M.
Ellguth
,
A. A.
Ünal
,
C.-T.
Chiang
,
A.
Winkelmann
,
A.
Krasyuk
,
M.
Hahn
,
G.
Schönhense
, and
J.
Kirschner
, “
Spin resolved photoelectron microscopy using a two-dimensional spin-polarizing electron mirror
,”
Appl. Phys. Lett.
99
,
032505
(
2011
).
51.
D.
Kutnyakhov
,
P.
Lushchyk
,
A.
Fognini
,
D.
Perriard
,
M.
Kolbe
,
K.
Medjanik
,
E.
Fedchenko
,
S. A.
Nepijko
,
H. J.
Elmers
,
G.
Salvatella
,
C.
Stieger
,
R.
Gort
,
T.
Bähler
,
T.
Michlmayer
,
Y.
Acremann
,
A.
Vaterlaus
,
F.
Giebels
,
H.
Gollisch
,
R.
Feder
,
C.
Tusche
,
A.
Krasyuk
,
J.
Kirschner
, and
G.
Schönhense
, “
Imaging spin filter for electrons based on specular reflection from Ir(001)
,”
Ultramicroscopy
130
,
63
69
(
2013
).
52.
E. D.
Schäfer
,
S.
Borek
,
J.
Braun
,
J.
Minar
,
H.
Ebert
,
K.
Medjanik
,
D.
Kutnyakhov
,
G.
Schönhense
, and
H. J.
Elmers
, “
Vectorial spin-polarization detection in multichannel spin-resolved photoemission spectroscopy using an Ir(001) imaging spin filter
,”
Phys. Rev. B
95
,
104423
(
2017
).
53.
J.
Kirschner
,
F.
Giebels
,
H.
Gollisch
, and
R.
Feder
, “
Spin-polarized electron scattering from pseudomorphic Au on Ir(001)
,”
Phys. Rev. B
88
,
125419
(
2013
).
54.
D.
Vasilyev
,
C.
Tusche
,
F.
Giebels
,
H.
Gollisch
,
R.
Feder
, and
J.
Kirschner
, “
Low-energy electron reflection from Au-passivated Ir (001) for application in imaging spin-filters
,”
J. Electron Spectrosc. Relat. Phenom.
199
,
10
(
2015
).
55.
M.
Ellguth
,
C.
Tusche
, and
J.
Kirschner
, “
Optical generation of hot spin-polarized electrons from a ferromagnetic two-dimensional electron gas
,”
Phys. Rev. Lett.
115
,
266801
(
2015
).
56.
A.
Polyakov
,
C.
Tusche
,
M.
Ellguth
,
E. D.
Crozier
,
K.
Mohseni
,
M. M.
Otrokov
,
X.
Zubizarreta
,
M. G.
Vergniory
,
M.
Geilhufe
,
E. V.
Chulkov
,
A.
Ernst
,
H. L.
Meyerheim
, and
S. S. P.
Parkin
, “
Instability of the topological surface state in Bi2Se3 upon deposition of gold
,”
Phys. Rev. B
95
,
180202(R)
(
2017
).
57.
J.
de la Figuera
and
C.
Tusche
, “
The Verwey transition observed by spin-resolved photoemission electron microscopy
,”
Appl. Surf. Sci.
391
,
66
(
2017
).
58.
C.
Tusche
,
M.
Ellguth
,
V.
Feyer
,
A.
Krasyuk
,
C.
Wiemann
,
J.
Henk
,
C. M.
Schneider
, and
J.
Kirschner
, “
Nonlocal electron correlations in an itinerant ferromagnet
,”
Nat. Commun.
9
,
3727
(
2018
).
59.
C.
Tusche
,
Y.-J.
Chen
,
L.
Plucinski
, and
C. M.
Schneider
, “
From photoemission microscopy to an ‘all-in-one’ photoemission experiment
,”
e-J. Surf. Sci. Nanotechnol.
18
,
48
56
(
2020
).
60.
E.
Młyńczak
,
M. C. T. D.
Müller
,
P.
Gospodarič
,
T.
Heider
,
I.
Aguilera
,
G.
Bihlmayer
,
M.
Gehlmann
,
M.
Jugo-vac
,
G.
Zamborlini
,
C.
Tusche
,
S.
Suga
,
V.
Feyer
,
L.
Plucinski
,
C.
Friedrich
,
S.
Blügel
, and
C. M.
Schneider
, “
Kink far below the Fermi level reveals new electron-magnon scattering channel in Fe
,”
Nat. Commun.
10
,
505
(
2019
).
61.
A.
Polyakov
,
K.
Mohseni
,
G. R.
Castro
,
J.
Rubio-Zuazo
,
A.
Zeugner
,
A.
Isaeva
,
Y.-J.
Chen
,
C.
Tusche
, and
H. L.
Meyerheim
, “
A bismuth triiodide monosheet on Bi2Se3(0001)
,”
Sci. Rep.
9
,
4052
(
2019
).
62.
S.
Chernov
,
C.
Lidig
,
O.
Fedchenko
,
K.
Medjanik
,
S.
Babenkov
,
D.
Vasilyev
,
M.
Jourdan
,
G.
Schönhense
, and
H. J.
Elmers
, “
Band structure tuning of Heusler compounds revisited: Spin- and momentum-resolved electronic structure analysis of compounds with different band filling
,” arXiv:1910.05205 (
2019
).
63.
H. J.
Elmers
,
J.
Regel
,
T.
Mashof
,
J.
Braun
,
S.
Babenkov
,
S.
Chernov
,
O.
Fedchenko
,
K.
Medjanik
,
D.
Vasilyev
,
J.
Minar
,
H.
Ebert
, and
G.
Schönhense
, “
Rashba splitting of the Tamm surface state on Re(0001) observed by spin-resolved photoemission and scanning tunnelling spectroscopy
,”
Phys. Rev. Res.
2
,
013296
(
2020
).
64.
D.
Kutnyakhov
,
S.
Chernov
,
K.
Medjanik
,
R.
Wallauer
,
C.
Tusche
,
M.
Ellguth
,
S. A.
Nepijko
,
M.
Krivenkov
,
J.
Braun
,
S.
Borek
,
J.
Minar
,
H.
Ebert
,
H. J.
Elmers
, and
G.
Schönhense
, “
Spin texture of time-reversal symmetry invariant surface states on W(110)
,”
Sci. Rep.
6
,
29394
(
2016
).
65.
G.
Schönhense
,
K.
Medjanik
,
S.
Chernov
,
D.
Kutnyakhov
,
O.
Fedchenko
,
M.
Ellguth
,
D.
Vasilyev
,
A.
Zaporozhchenko-Zymaková
,
D.
Panzer
,
A.
Oelsner
,
C.
Tusche
,
B.
Schönhense
,
J.
Braun
,
J.
Minár
,
H.
Ebert
,
J.
Viefhaus
,
W.
Wurth
, and
H. J.
Elmers
, “
Spin-filtered time-of-flight k-space microscopy of Ir—Towards the ‘complete’ photoemission experiment
,”
Ultramicroscopy
183
,
19
29
(
2017
).
66.
H. J.
Elmers
,
R.
Wallauer
,
M.
Liebmann
,
J.
Kellner
,
M.
Morgenstern
,
R. N.
Wang
,
J. E.
Boschker
,
R.
Calarco
,
J.
Sanchez-Barriga
,
O.
Rader
,
D.
Kutnyakhov
,
S. V.
Chernov
,
K.
Medjanik
,
C.
Tusche
,
M.
Ellguth
,
H.
Volfova
,
S.
Borek
,
J.
Braun
,
J.
Minár
,
H.
Ebert
, and
G.
Schönhense
, “
Spin mapping of surface and bulk Rashba states in ferroelectric α-GeTe(111) films
,”
Phys. Rev. B
94
,
201403
(
2016
).
67.
J.
Knippertz
,
P. M.
Buhl
,
S.
Mousavion
,
B.
Dupé
,
E. S.
Walther
,
K.
Medjanik
,
D.
Vasilyev
,
S.
Babenkov
,
M.
Ellguth
,
M.
Maniraj
,
J.
Sinova
,
G.
Schönhense
,
H.-J.
Elmers
,
B.
Stadtmüller
, and
M.
Aeschlimann
, “
Exchange splitting of a hybrid surface state and ferromagnetic order in a 2D surface alloy
,” arXiv:1906.03780 (
2018
).
68.
D.
Vasilyev
,
K.
Medjanik
,
S.
Babenkov
,
M.
Ellguth
,
G.
Schönhense
, and
H.-J.
Elmers
, “
Relation between spin-orbit induced spin polarization, fano-effect and circular dichroism in soft x-ray photoemission
,”
J. Phys.: Condens. Matter
32
,
135501
(
2020
).
69.
M.
Schmitt
,
O.
Kirilmaz
,
S.
Chernov
,
S.
Babenkov
,
D.
Vasilyev
,
K.
Medjanik
,
O.
Fedchenko
,
Y.
Matveyev
,
A.
Gloskowski
,
C.
Schlueter
,
H.-J.
Elmers
,
G.
Schönhense
,
M.
Sing
, and
R.
Claessen
, “
Determination of the bulk spin polarization of Fe3O4 (111) thin films by means of spin-resolved hard x-ray time-of-flight microscopy
” (unpublished).
71.
C. E.
Kuyatt
and
J. A.
Simpson
, “
Electron monochromator design
,”
Rev. Sci. Instrum.
38
,
103
(
1967
).
72.
B.
Wannberg
,
U.
Gelius
, and
K.
Siegbahn
, “
Design principles in electron spectroscopy
,”
J. Phys. E: Sci. Instrum.
7
,
149
(
1974
).
73.
R. E.
Imhof
,
A.
Adams
, and
G. C.
King
, “
Energy and time resolution of the 180° hemispherical eIectrostatic analyzer
,”
J. Phys. E: Sci. Instrum.
9
,
138
142
(
1976
).
74.
D.
Roy
and
J. D.
Carette
, “
Design of electron spectrometers for surface analysis
,” in
Topics in Current Physics
, edited by
H.
Ibach
(
Springer
,
Berlin
,
1977
), Vol. 4, pp.
13
58
.
75.
M.
Volkel
and
W.
Sandner
, “
Optimisation of electron energy analyzers for application in coincidence experiments
,”
J. Phys. E: Sci. Instrum.
16
,
456
462
(
1983
).
76.
B. P.
Tonner
, “
Energy-filtered imaging with electrostatic optics for photoelectron microscopy
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
291
,
60
66
(
1990
).
77.
T. J. M.
Zouros
and
E. P.
Benis
, “
The hemispherical deflector analyzer revisited. I. Motion in the ideal 1/r potential, generalized entry conditions, Kepler orbits and spectrometer basic equation
J. Electron Spectrosc. Relat. Phenom.
125
,
221
248
(
2002
) [Erratum 142, 175–176 (2005)];
E. P.
Benis
and
T. J. M.
Zouros
, “
The hemispherical deflector analyzer revisited. II. Electron-optical properties
,”
J. Electron Spectrosc. Relat. Phenom.
163
,
28
39
(
2008
).
78.
B.
Wannberg
, “
Electron optics development for photo-electron spectrometers
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
601
,
182
194
(
2009
).
79.
O.
Sise
and
T. J. M.
Zouros
, “
Position, energy, and transit time distributions in a hemispherical deflector analyzer with position sensitive detector
,”
J. Spectrosc.
2015
,
153513
.
80.
H. D.
Polaschegg
, “
Spherical analyzer with pre-retardation
,”
Appl. Phys.
4
,
63
68
(
1974
).
81.
A.
Tamai
,
W.
Meevasana
,
P. D. C.
King
,
C. W.
Nicholson
,
A.
de la Torre
,
E.
Rozbicki
, and
F.
Baumberger
, “
Spin-orbit splitting of the Shockley surface state on Cu(111)
,”
Phys. Rev. B
87
,
075113
(
2013
).
82.
K.
Tsuno
,
T.
Kaneyama
,
T.
Honda
, and
Y.
Ishida
, “
Non-isochromaticity of an omega filter in a 200 kV transmission electron microscope
,”
J. Electron. Microsc.
47
,
611
619
(
1998
).
83.
R.
Herzog
, “
Ablenkung von kathoden- und kanalstrahlen am rande eines kondensators, dessen streufeld durch eine blende begrenzt ist
,”
Z. Phys.
97
,
596
(
1935
).
84.
R.
Herzog
, “
Elektronenoptische zylinderlinsenwirkung der streufelder eines kondensators
,”
Phys. Zeitschrift
41
,
18
26
(
1940
).
85.
H.
Wollnik
, “
Electrostatic prisms
,” in
Focusing of Charged Particles
, 1st ed., edited by
A.
Septier
(
Academic
,
New York
,
1967
), Vol. I, pp.
163
202
.
86.
D.
Roy
and
D.
Tremblay
, “
Design of electron spectrometers
,”
Rep. Prog. Phys.
53
,
1621
1674
(
1990
).
87.
D. Q.
Hu
and
K. T.
Leung
, “
SIMION study of the fringing field effects in deflector-type electrostatic electron energy analyzers: A new flexible jost-based correction scheme
,”
Rev. Sci. Instrum.
66
,
2865
2870
(
1995
).
88.
K.
Jost
, “
Fringing field correction for 127° and 180° electron spectrometers
,”
J. Phys. E: Sci. Instrum.
12
,
1001
(
1979
).
89.
K.
Jost
, “
Novel design of a ‘spherical’ electron spectrometer
,”
J. Phys. E: Sci. Instrum.
12
,
1006
(
1979
).
90.
E. P.
Benis
and
T. J. M.
Zouros
, “
Improving the energy resolution of a hemispherical spectrograph using a paracentric entry at a non-zero potential
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
440
,
462
465
(
2000
).
91.
T. J. M.
Zouros
and
E. P.
Benis
, “
Optimal energy resolution of a hemispherical analyzer with virtual entry
,”
Appl. Phys. Lett.
86
,
094105
(
2005
).
92.
O.
Sise
,
T. J. M.
Zouros
,
M.
Ulu
, and
M.
Dogan
, “
Novel and traditional fringing field correction schemes for the hemispherical analyzer: Comparison of first-order focusing and energy resolution
,”
Meas. Sci. Technol.
18
,
1853
1858
(
2007
).
93.
O.
Sise
,
M.
Ulu
,
M.
Dogan
,
G.
Martinez
, and
T. J. M.
Zouros
, “
Fringing field optimization of hemispherical deflector analyzers using BEM and FDM
,”
J. Electron Spectrosc. Relat. Phenom.
177
,
42
51
(
2010
).
94.
M.
Dogan
,
M.
Ulu
,
G. G.
Gennarakis
, and
T. J. M.
Zouros
, “
Experimental energy resolution of a paracentric hemispherical analyzer for different entry positions and bias
,”
Rev. Sci. Instrum.
84
,
043105
(
2013
).
95.
S.
Doukas
,
I.
Madesis
,
A.
Dimitriou
,
A.
Laoutaris
,
T. J. M.
Zouros
, and
E. P.
Benis
, “
Determination of the solid angle and response function of a hemispherical spectrograph with injection lens for Auger electrons emitted from long lived projectile states
,”
Rev. Sci. Instrum.
86
,
043111
(
2015
).
96.
See https://www.surface-concept.com/index.html for multiline detectors and https://www.surface-concept.com/downloads/info/ml_dld.pdf for Surface Concept Delay-Line Detectors.
98.
E.
Bauer
, “
Photoelectron spectromicroscopy: Present and future
,”
J. Electron Spectrosc. Relat. Phenom.
114-116
,
975
987
(
2001
).
99.
G.
Schönhense
and
U.
Heinzmann
, “
A capillary discharge tube for the production of intense VUV resonance radiation
,”
J. Phys. E: Sci. Instrum.
16
,
74
(
1983
).
100.
J.
Viefhaus
,
F.
Scholz
,
S.
Deinert
,
L.
Glaser
,
M.
Ilchen
,
J.
Seltmann
,
P.
Walter
, and
F.
Siewert
,
Nucl. Instrum. Methods Phys. Res., Sect. A
710
,
151
154
(
2013
).
101.
T.-L.
Lee
and
D. A.
Duncan
,
Synchr. Rad. News
31
,
16
(
2018
).
102.
J. A. R.
Samson
and
D.
Ederer
,
Vacuum Ultraviolet Spectroscopy II
(
Elsevier
,
Amsterdam, Oxford
,
1999
).
103.
G.
Schönhense
,
K.
Medjanik
, and
H.-J.
Elmers
, “
Space-, time- and spin-resolved photoemission
,”
J. Electron Spectrosc. Relat. Phenom.
200
,
94
(
2015
).
104.
T.-C.
Chiang
, “
Photoemission studies of quantum well states in thin films
,”
Surf. Sci. Rep.
39
,
181
235
(
2000
).
105.
I.
Matsuda
,
H. W.
Yeom
,
T.
Tanikawa
,
K.
Tono
,
T.
Nagao
,
S.
Hasegawa
, and
T.
Ohta
, “
Growth and electron quantization of metastable silver films on Si(001)
,”
Phys. Rev. B
63
,
125325
(
2001
).
106.
N. J.
Speer
,
S.-J.
Tang
,
T.
Miller
, and
T.-C.
Chiang
, “
Coherent electronic fringe structure in incommensurate silver-silicon quantum wells
,”
Science
314
,
804
(
2006
).
107.
L.
Walldén
, “
Beyond the particle in the box
,”
Science
314
,
769
(
2006
).
108.
S. K.
Mahatha
and
K. S. R.
Menon
, “
Quantum well states in Ag thin films on MoS2(0001) surfaces
,”
J. Phys.: Condens. Matter
25
,
115501
(
2013
).
109.
S. K.
Mahatha
and
K. S. R.
Menon
, “
Near-freely standing Au quantum well states on MoS2(0001) surface
,”
J. Electron Spectrosc. Relat. Phenom.
193
,
43
(
2014
).
110.
U.
Rössler
, “
Electron and exciton states in solid rare gases
,”
Phys. Status Solidi
42
,
345
(
1970
).
111.
B.
Kessler
,
A.
Eyers
,
K.
Horn
,
N.
Müller
,
B.
Schmiedeskamp
,
G.
Schönhense
, and
U.
Heinzmann
, “
Determination of xenon valence and conduction bands by spin-polarized photoemission
,”
Phys. Rev. Lett.
59
,
331
(
1987
).
112.
T.
Schmitz-Hübsch
,
K.
Oster
,
J.
Radnik
, and
K.
Wandelt
, “
Photoemission from quantum-well states in ultrathin Xe crystals
,”
Phys. Rev. Lett.
74
,
2595
(
1995
).
113.
R.
Paniago
,
R.
Matzdorf
,
G.
Meister
, and
A.
Goldmann
, “
Quantization of electron states in ultrathin xenon layers
,”
Surf. Sci.
325
,
336
342
(
1995
).
114.
M.
Grüne
,
T.
Pelzer
,
K.
Wandelt
, and
I. T.
Steinberger
, “
Quantum-size effects in thin solid xenon films
,”
J. Electron Spectrosc. Relat. Phenom.
98-99
,
121
131
(
1999
).
115.
K.
Horn
,
M.
Scheffler
, and
A. M.
Bradshaw
, “
Photoemission from physisorbed xenon: Evidence for lateral interactions
,”
Phys. Rev. Lett.
41
,
822
(
1978
).
116.
K.
Kambe
, “
A simple tight-binding theory with spin-orbit coupling for the analysis of two-dimensional band structures of adsorbates
,”
Surf. Sci.
105
,
95
113
(
1981
).
117.
G.
Schönhense
, “
Photoelectron spin-polarization spectroscopy: A new method in adsorbate physics
,”
Appl. Phys. A
41
,
39
60
(
1986
).
118.
T.
Kiss
,
T.
Shimojima
,
K.
Ishizaka
,
A.
Chainani
,
T.
Togashi
,
T.
Kanai
,
X.-Y.
Wang
,
C.-T.
Chen
,
S.
Watanabe
, and
S.
Shin
, “
A versatile system for ultrahigh resolution, low temperature, and polarization dependent laser-angle-resolved photoemission spectroscopy
,”
Rev. Sci. Instrum.
79
,
023106
(
2008
).
119.
T.
Shimojima
,
K.
Okazaki
, and
S.
Shin
, “
Low-temperature and high-energy-resolution laser photo-emission spectroscopy
,”
J. Phys. Soc. Jpn.
84
,
072001
(
2015
).
121.
J.
Tesch
,
F.
Paschke
,
M.
Fonin
,
M.
Wietstruk
,
S.
Böttcher
,
R. J.
Koch
,
A.
Bostwick
,
C.
Jozwiak
,
E.
Rotenberg
,
A.
Makarova
,
B.
Paulus
,
E.
Voloshina
, and
Y.
Dedkov
, “
The graphene/n-Ge(110) interface: Structure, doping, and electronic properties
,”
Nanoscale
10
,
6088
6098
(
2018
).
122.
F.
Matsui
,
S.
Makita
,
H.
Matsuda
,
T.
Yano
,
E.
Nakamura
,
K.
Tanaka
,
S.
Suga
, and
S.
Kera
, “
Photoelectron momentum microscope at BL6U of UVSOR-III synchrotron
,”
Jpn. J. Appl. Phys.
59
,
067001
(
2020
).
123.
H. J.
Elmers
,
S. V.
Chernov
,
S. W.
D’Souza
,
S. P.
Bommanaboyena
,
S. Yu.
Bodnar
,
K.
Medjanik
,
S.
Babenkov
,
O.
Fedchenko
,
D.
Vasilyev
,
S. Y.
Agustsson
,
C.
Schlueter
,
A.
Gloskovskii
,
Yu.
Matveyev
,
V. N.
Strocov
,
Y.
Skourski
,
L.
Smejkal
,
J.
Sinova
,
J.
Minar
,
M.
Kläui
,
G.
Schönhense
, and
M.
Jourdan
, “
Néel Vector Induced Manipulation of Valence States in the Collinear Antiferromagnet Mn2Au
,”
ACS Nano.
(published online).
You do not currently have access to this content.