This article describes a picosecond solid-state pulsed system, where the input pulse from the generator with a semiconductor opening switch (SOS) is amplified in power and decreases in duration by ferrite gyromagnetic lines. The lines operate in the Magnetic Compression Line (MCL) mode, which occurs at close values of the input pulse duration and the period of the oscillations generated in the line. The energy compression system contains three successive stages—MCL1–MCL3 lines. For an input pulse power of 6 GW (490 kV, 40 Ω) and a duration of 7 ns, pulses of 54 GW (1.62 MV, 48 Ω) and a duration of 170 ps have been achieved at the MCL3 output. Compared to the parameters of the input pulse, the voltage rise rate has been increased ∼130 times up to 14.8 MV/ns, and the power rise rate has been increased ∼350 times up to 0.7 TW/ns. A numerical simulation of the MCL3 line operation in which the maximum electric and magnetic fields are realized (>2 MV/cm and >500 kA/m, respectively) has been carried out. The inner structure of the process of power amplification during the electromagnetic wave passage along the line has been demonstrated. First, the front of the input pulse is sharpened, and then, after the excitation of the oscillations, the process of power amplification begins, followed by the pulse amplitude reaching the saturation region.

1.
G. A.
Mesyats
and
M. I.
Yalandin
, “
High-power picosecond electronics
,”
Phys.-Usp.
48
,
211
229
(
2005
).
2.
G. A.
Mesyats
,
Pulsed Power
(
Kluwer Academic/Plenum Publishers
,
New York
,
2005
), p.
588
.
3.
M. I.
Yalandin
and
V. G.
Shpak
, “
Compact high-power subnanosecond repetitive-pulse generators (Review)
,”
Instrum. Exp. Tech.
44
,
285
310
(
2001
).
4.
A. M.
Efremov
,
V. I.
Koshelev
,
B. M.
Kovalchuk
,
V. V.
Plisko
, and
K. N.
Sukhushin
, “
High-power sources of ultra-wideband radiation with subnanosecond pulse lengths
,”
Instrum. Exp. Tech.
54
,
70
76
(
2011
).
5.
D.
Morton
,
J.
Banister
,
J.
Levine
,
T.
Naff
,
I.
Smith
,
H.
Sze
,
T.
Warren
,
D. V.
Giri
,
C.
Mora
,
J.
Pavlinko
,
J.
Schleher
, and
C. E.
Baum
, “
A 2 MV, < 300 ps rise time, 100 Hz pulser for generation of microwaves
,” in
Proceedings of the IEEE International Power Modulator and High Voltage Conference
(
IEEE
,
Atlanta, GA
,
2010
), pp.
361
364
.
6.
I. V.
Grekhov
,
S. V.
Korotkov
, and
P. B.
Rodin
, “
Novel closing switches based on propagation of fast ionization fronts in semiconductors
,”
IEEE Trans. Plasma Sci.
36
,
378
382
(
2008
).
7.
I. V.
Grekhov
, “
Pulse power generation in nano- and subnanosecond range by means of ionizing fronts in semiconductors: The state of the art and future prospects
,”
IEEE Trans. Plasma Sci.
38
,
1118
1123
(
2010
).
8.
S. K.
Lyubutin
,
S. N.
Rukin
,
B. G.
Slovikovsky
, and
S. N.
Tsyranov
, “
High-power ultrafast current switching by a silicon sharpener operating at an electric field close to the threshold of the Zener breakdown
,”
IEEE Trans. Plasma Sci.
38
,
2627
2632
(
2010
).
9.
A. I.
Gusev
,
S. K.
Lyubutin
,
S. N.
Rukin
,
B. G.
Slovikovsky
, and
S. N.
Tsyranov
, “
On the picosecond switching of a high-density current (60 kA/cm2) via a Si closing switch based on a superfast ionization front
,”
Semiconductors
48
,
1067
1078
(
2014
).
10.
A. I.
Gusev
,
M. S.
Pedos
,
S. N.
Rukin
,
S. P.
Timoshenkov
, and
S. N.
Tsyranov
, “
Semiconductor sharpeners providing a subnanosecond voltage rise time of GW-range pulses
,”
Rev. Sci. Instrum.
88
,
114704
(
2017
).
11.
M. R.
Ulmaskulov
,
G. A.
Mesyats
,
A. G.
Sadykova
,
K. A.
Sharypov
,
V. G.
Shpak
,
S. A.
Shunailov
, and
M. I.
Yalandin
, “
Energy compression of nanosecond high-voltage pulses based on two-stage hybrid scheme
,”
Rev. Sci. Instrum.
88
,
045106
(
2017
).
12.
A. I.
Gusev
,
M. S.
Pedos
,
S. N.
Rukin
, and
S. P.
Timoshenkov
, “
Solid-state repetitive generator with a gyromagnetic nonlinear transmission line operating as a peak power amplifier
,”
Rev. Sci. Instrum.
88
,
074703
(
2017
).
13.
A. I.
Gusev
,
M. S.
Pedos
,
A. V.
Ponomarev
,
S. N.
Rukin
,
S. P.
Timoshenkov
, and
S. N.
Tsyranov
, “
A 30 GW subnanosecond solid-state pulsed power system based on generator with semiconductor opening switch and gyromagnetic nonlinear transmission lines
,”
Rev. Sci. Instrum.
89
,
094703
(
2018
).
14.
G. A.
Mesyats
,
M. S.
Pedos
,
S. N.
Rukin
,
V. V.
Rostov
,
I. V.
Romanchenko
,
A. G.
Sadykova
,
K. A.
Sharypov
,
V. G.
Shpak
,
S. A.
Shunailov
,
M. R.
Ul’masculov
, and
M. I.
Yalandin
, “
Formation of 1.4 MeV runaway electron flows in air using a solid-state generator with 10 MV/ns voltage rise rate
,”
Appl. Phys. Lett.
112
,
163501
(
2018
).
15.
M. R.
Ulmaskulov
,
S. A.
Shunailov
,
K. A.
Sharypov
, and
M. I.
Yalandin
, “
Multistage converter of high-voltage subnanosecond pulses based on nonlinear transmission lines
,”
J. Appl. Phys.
126
,
084504
(
2019
).
16.
S. N.
Rukin
, “
Pulsed power technology based on semiconductor opening switches: A review
,”
Rev. Sci. Instrum.
91
,
011501
(
2020
).
17.
V. P.
Gubanov
,
A. V.
Gunin
,
O. B.
Koval’chuk
,
V. O.
Kutenkov
,
I. V.
Romanchenko
, and
V. V.
Rostov
, “
Effective transformation of the energy of high-voltage pulses into high-frequency oscillations using a saturated-ferrite-loaded transmission line
,”
Tech. Phys. Lett.
35
,
626
628
(
2009
).
18.
I. V.
Romanchenko
and
V. V.
Rostov
, “
Energy levels of oscillations in a nonlinear transmission line filled with saturated ferrite
,”
Tech. Phys.
55
,
1024
1027
(
2010
).
19.
S. J. F.
Chadwick
,
N.
Seddon
, and
S.
Rukin
, “
A novel solid-state HPM source based on a gyromagnetic NLTL and SOS-based pulse generator
,” in
Proceedings of the 18th IEEE International Pulsed Power Conference, Chicago, IL USA, June 19–23, 2011
, edited by
R. D.
Curry
and
B. V.
Oliver
(
IEEE
,
2011
), pp.
178
181
.
20.
I. V.
Romanchenko
,
V. V.
Rostov
,
V. P.
Gubanov
,
A. S.
Stepchenko
,
A. V.
Gunin
, and
I. K.
Kurkan
, “
Repetitive sub-gigawatt rf source based on gyromagnetic nonlinear transmission line
,”
Rev. Sci. Instrum.
83
,
074705
(
2012
).
21.
M. R.
Ul’masculov
,
M. S.
Pedos
,
S. N.
Rukin
,
K. A.
Sharypov
,
V. G.
Shpak
,
S. A.
Shunailov
,
M. I.
Yalandin
,
I. V.
Romanchenko
, and
V. V.
Rostov
, “
High repetition rate multi-channel source of high-power rf-modulated pulses
,”
Rev. Sci. Instrum.
86
,
074702
(
2015
).
22.
J.-W. B.
Bragg
,
J. C.
Dickens
, and
A. A.
Neuber
, “
Ferrimagnetic nonlinear transmission lines as high-power microwave sources
,”
IEEE Trans. Plasma Sci.
41
,
232
237
(
2013
).
23.
J.-W. B.
Bragg
,
W. W.
Sullivan
,
D.
Mauch
,
A. A.
Neuber
, and
J. C.
Dickens
, “
All solid-state high power microwave source with high repetition frequency
,”
Rev. Sci. Instrum.
84
,
054703
(
2013
).
24.
D. V.
Reale
,
J.-W. B.
Bragg
,
N. R.
Gonsalves
,
J. M.
Johnson
,
A. A.
Neuber
,
J. C.
Dickens
, and
J. J.
Mankowski
, “
Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines
,”
Rev. Sci. Instrum.
85
,
054706
(
2014
).
25.
J. M.
Johnson
,
D. V.
Reale
,
J. T.
Krile
,
R. S.
Garcia
,
W. H.
Cravey
,
A. A.
Neuber
,
J. C.
Dickens
, and
J. J.
Mankowski
, “
Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source
,”
Rev. Sci. Instrum.
87
,
054704
(
2016
).
26.
D. V.
Reale
,
J. M.
Parson
,
A. A.
Neuber
,
J. C.
Dickens
, and
J. J.
Mankowski
, “
Investigation of a stripline transmission line structure for gyromagnetic nonlinear transmission line high power microwave sources
,”
Rev. Sci. Instrum.
87
,
034706
(
2016
).
27.
I. V.
Romanchenko
,
V. V.
Rostov
,
A. V.
Gunin
, and
V. Y.
Konev
, “
High power microwave beam steering based on gyromagnetic nonlinear transmission lines
,”
J. Appl. Phys.
117
,
214907
(
2015
).
28.
I. V.
Romanchenko
,
V. V.
Rostov
,
A. V.
Gunin
, and
V. Y.
Konev
, “
Gyromagnetic RF source for interdisciplinary research
,”
Rev. Sci. Instrum.
88
,
024703
(
2017
).
29.
I. V.
Romanchenko
,
M. R.
Ulmaskulov
,
K. A.
Sharypov
,
S. A.
Shunailov
,
V. G.
Shpak
,
M. I.
Yalandin
,
M. S.
Pedos
,
S. N.
Rukin
,
V. Y.
Konev
, and
V. V.
Rostov
, “
Four channel high power rf source with beam steering based on gyromagnetic nonlinear transmission lines
,”
Rev. Sci. Instrum.
88
,
054703
(
2017
).
30.
M. R.
Ul’maskulov
,
S. A.
Shunailov
,
K. A.
Sharypov
,
M. I.
Yalandin
,
V. G.
Shpak
,
M. S.
Pedos
, and
S. N.
Rukin
, “
Coherent summation of radiation from four-channel shock-excited RF source operating at 4 GHz and a repetition rate of 1000 Hz
,”
IEEE Trans. Plasma Sci.
45
,
2623
2628
(
2017
).
31.
M. R.
Ulmaskulov
,
S. A.
Shunailov
,
K. A.
Sharypov
,
M. I.
Yalandin
,
V. G.
Shpak
,
S. N.
Rukin
, and
M. S.
Pedos
, “
Four-channel generator of 8-GHz radiation based on gyromagnetic non-linear transmitting lines
,”
Rev. Sci. Instrum.
90
,
064703
(
2019
).
32.
A. I.
Gusev
,
M. S.
Pedos
,
S. N.
Rukin
,
S. P.
Timoshenkov
, and
S. N.
Tsyranov
, “
A 6 GW nanosecond solid-state generator based on semiconductor opening switch
,”
Rev. Sci. Instrum.
86
,
114706
(
2015
).
33.
J.-W. B.
Bragg
,
J. C.
Dickens
, and
A. A.
Neuber
, “
Material selection considerations for coaxial, ferrimagnetic-based nonlinear transmission lines
,”
J. Appl. Phys.
113
,
064904
(
2013
).
34.
S. Y.
Karelin
, “
FDTD analysis of nonlinear magnetized ferrites: Simulation of oscillation forming in coaxial line with ferrite
,”
Telecommun. Radio Eng.
76
,
873
882
(
2017
).
35.
J.-W.
Ahn
,
S. Y.
Karelin
,
V. B.
Krasovitsky
,
H.-O.
Kwon
,
I. I.
Magda
,
V. S.
Mukhin
,
O. G.
Melezhik
, and
V. G.
Sinitsin
, “
Wideband RF radiation from a nonlinear transmission line with a pre-magnetized ferromagnetic core
,”
J. Magn.
21
,
450
459
(
2016
).
36.
S. Y.
Karelin
,
V. B.
Krasovitsky
,
I. I.
Magda
,
V. S.
Mukhin
, and
V. G.
Sinitsin
, “
Radio frequency oscillations in gyrotropic nonlinear transmission lines
,”
Plasma
2
,
258
271
(
2019
).
You do not currently have access to this content.