High pressure–temperature conditions can be readily achieved through the laser-heated diamond anvil cell (LH-DAC). A stable laser source is required for reliable in situ measurements of the sample, as the sample is small with a thermal time constant of the order of microseconds. Here, we show that the power instabilities typical of CO2 gas lasers used in LH-DAC’s are ±5% at the second timescale and ∼±50% at the microsecond timescale. We also demonstrate that the pointing instability of the laser requires either a diffuser or an integrating sphere for reliable total power measurements with small sized detectors. We present a simple solution for stabilizing the power of a CO2 gas laser on the second timescale by the direct modulation of the current across the tube and another solution that stabilizes the power to the microsecond timescale by externally modulating the CO2 laser beam. Both solutions can achieve a ±0.3% power stability.

1.
S.
Rekhi
,
J.
Tempere
, and
I. F.
Silvera
, “
Temperature determination for nanosecond pulsed laser heating
,”
Rev. Sci. Instrum.
74
,
3820
3825
(
2003
).
2.
S.
Deemyad
,
E.
Sterer
,
C.
Barthel
,
S.
Rekhi
,
J.
Tempere
, and
I. F.
Silvera
, “
Pulsed laser heating and temperature determination in a diamond anvil cell
,”
Rev. Sci. Instrum.
76
,
125104
(
2005
).
3.
S.
Petitgirard
,
A.
Salamat
,
P.
Beck
,
G.
Weck
, and
P.
Bouvier
, “
Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline
,”
J. Synchrotron Radiat.
21
,
89
96
(
2014
).
4.
Z. M.
Geballe
,
G. W.
Collins
, and
R.
Jeanloz
, “
Modulation calorimetry in diamond anvil cells. I. Heat flow models
,”
J. Appl. Phys.
121
,
145902
(
2017
).
5.
M.
Zaghoo
,
A.
Salamat
, and
I. F.
Silvera
, “
Evidence of a first-order phase transition to metallic hydrogen
,”
Phys. Rev. B
93
,
155128
(
2016
).
6.
S.
Deemyad
,
A. N.
Papathanassiou
, and
I. F.
Silvera
, “
Strategy and enhanced temperature determination in a laser heated diamond anvil cell
,”
J. Appl. Phys.
105
,
093543
(
2009
).
7.
J. A.
Queyroux
,
S.
Ninet
,
G.
Weck
,
G.
Garbarino
,
T.
Plisson
,
M.
Mezouar
, and
F.
Datchi
, “
Melting curve and chemical stability of ammonia at high pressure: Combined x-ray diffraction and Raman study
,”
Phys. Rev. B
99
,
134107
(
2019
).
8.
D.
Andrault
,
G.
Morard
,
G.
Garbarino
,
M.
Mezouar
,
M. A.
Bouhifd
, and
T.
Kawamoto
, “
Melting behavior of SiO2 up to 120 GPa
,”
Phys. Chem. Miner.
47
,
10
(
2020
).
9.
T.
Kimura
,
H.
Ohfuji
,
M.
Nishi
, and
T.
Irifune
, “
Melting temperatures of MgO under high pressure by micro-texture analysis
,”
Nat. Commun.
8
,
15735
(
2017
).
10.
T.
Kimura
,
Y.
Kuwayama
, and
T.
Yagi
, “
Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique
,”
J. Chem. Phys.
140
,
074501
(
2014
).
11.
A.
Kurnosov
,
H.
Marquardt
,
L.
Dubrovinsky
, and
V.
Potapkin
, “
A waveguide-based flexible CO2-laser heating system for diamond-anvil cell applications
,”
C. R. Geosci.
351
,
280
285
(
2019
).
12.
K.
Brister
and
W.
Bassett
, “
CO2 laser heating instrumentation at CHESS
,”
Rev. Sci. Instrum.
66
,
2698
2702
(
1995
).
13.
G.
Fiquet
,
D.
Andrault
,
A.
Dewaele
,
T.
Charpin
,
M.
Kunz
, and
D.
Haüsermann
, “
P-V-T equation of state of MgSiO3 perovskite
,”
Phys. Earth Planet. Inter.
105
,
21
31
(
1998
).
14.
A.
Dewaele
,
G.
Fiquet
,
D.
Andrault
, and
D.
Hausermann
, “
P-V-T equation of state of periclase from synchrotron radiation measurements
,”
J. Geophys. Res.: Solid Earth
105
,
2869
2877
, (
2000
).
15.
J.
Reid
and
K.
Siemsen
, “
New CO2 laser bands in the 9–11-μm wavelength region
,”
Appl. Phys. Lett.
29
,
250
251
(
1976
).
16.
M. W.
Lund
,
J. N.
Cogan
, and
J. A.
Davis
, “
Low-cost method for stabilization of a CO2 laser for use in far infrared laser pumping
,”
Rev. Sci. Instrum.
50
,
791
792
(
1979
).
17.
S.
Moffatt
and
A. L. S.
Smith
, “
High frequency optogalvanic signals and CO2 laser stabilisation
,”
Opt. Commun.
37
,
119
122
(
1981
).
18.
B.
Frech
,
L. F.
Constantin
,
A.
Amy-Klein
,
O.
Phavorin
,
C.
Daussy
,
C.
Chardonnet
, and
M.
Mürtz
,
Appl. Phys. B
67
,
217
221
(
1998
).
19.
V. P.
Kochanov
,
S. P.
Belov
, and
G. Y.
Golubiatnikov
, “
Lamb dip spectroscopy with the use of frequency-modulated radiation
,”
J. Quant. Spectrosc. Radiat. Transfer
149
,
146
157
(
2014
).
20.
R.
Huang
,
X.
Guo
,
Q.
Meng
, and
B.
Zhang
, “
A simple digital control system with field-programmable gate array for stabilization of CO2 laser output
,”
Rev. Sci. Instrum.
88
,
043105
(
2017
).
21.
J.
Choi
, “
Frequency stabilization of a radio frequency excited CO2 laser using the photoacoustic effect
,”
Rev. Sci. Instrum.
81
,
064901
(
2010
).
22.
L.
Wang
,
Z.
Tian
,
Y.
Zhang
,
J.
Wang
,
S.
Fu
,
J.
Sun
, and
Q.
Wang
, “
Frequency stabilization of pulsed CO2 laser using setup-time method
,”
Chin. Opt. Lett.
10
,
011402
(
2012
).
23.
K.
Nakayama
,
S.
Okajima
,
T.
Akiyama
,
K.
Tanaka
, and
K.
Kawahata
, “
Stabilization of 48- and 57-μm CH3 OD lasers for plasma diagnostics
,”
J. Instrum.
10
,
C12002
(
2015
).
24.
Closed Loop Kit|Synrad.
25.
M. A.
Jebali
, “
Polarization and wavelength insensitive optical feedback control systems for stabilizing CO2 lasers
,”
Proc. SPIE
9730
,
97301C
(
2016
).
26.
P. L.
Richards
, “
Bolometers for infrared and millimeter waves
,”
J. Appl. Phys.
76
,
1
24
(
1994
).
27.
B. S.
Patel
, “
Photon-drag germanium detectors for CW CO2 lasers
,”
Proc. IEEE
62
,
143
144
(
1974
).
28.
A. F.
Gibson
and
A. C.
Walker
, “
Sign reversal of the photon drag effect in p-type germanium
,”
J. Phys. C: Solid State Phys.
4
,
2209
2219
(
1971
).
29.
A. F.
Gibson
and
S.
Montasser
, “
A theoretical description of the photon-drag spectrum of p-type germanium
,”
J. Phys. C: Solid State Phys.
8
,
3147
3157
(
1975
).
30.
M. F.
Kimmitt
, “
Detection of infrared, free-electron laser radiation
,”
Proc. SPIE
1501
,
86
(
1991
).
31.
M. F.
Kimmitt
,
D. C.
Tyte
, and
M. J.
Wright
, “
Photon drag radiation monitors for use with pulsed CO2 lasers
,”
J. Phys. E: Sci. Instrum.
5
,
239
240
(
1972
).
32.
S. D.
Alaruri
, “
Construction of a photon drag detector for evaluating the performance of a CO2 laser amplifier
,”
Optik
125
,
4964
4967
(
2014
).
33.
R.
Boehler
, “
Laser heating in the diamond cell: Techniques and applications
,”
Hyperfine Interact.
128
,
307
321
(
2000
).
34.
R.
Boehler
and
A.
Chopelas
, “
A new approach to laser heating in high pressure mineral physics
,”
Geophys. Res. Lett.
18
,
1147
1150
, (
1991
).
35.
G.
Serghiou
,
A.
Zerr
,
L.
Chudinovskikh
, and
R.
Boehler
, “
The coesite–stishovite transition in a laser-heated diamond cell
,”
Geophys. Res. Lett.
22
,
441
444
, (
1995
).
36.
G. L.
Hansen
,
J. L.
Schmit
, and
T. N.
Casselman
, “
Energy gap versus alloy composition and temperature in Hg1−xCdxTe
,”
J. Appl. Phys.
53
,
7099
7101
(
1982
).
37.
P.
Norton
, “
HgCdTe infrared detectors
,”
Opto-Electronics Rev.
10
(
3
),
159
174
(
2002
).
38.
G. C.
Osbourn
, “
InAsSb strained-layer superlattices for long wavelength detector applications
,”
J. Vac. Sci. Technol., B
2
,
176
(
1984
).
39.
H.
Nishi
,
H.
Iwamoto
,
N.
Ujiie
, and
K.
Yajima
, “
Transparent waveplate (retarder) of ZnSe for high power CO2 lasers
,”
SEI Tech. Rev.
81
,
72
76
(
2015
).
40.
D. J.
Dummer
,
S. G.
Kaplan
,
L. M.
Hanssen
,
A. S.
Pine
, and
Y.
Zong
, “
High-quality Brewster’s angle polarizer for broadband infrared application
,”
Appl. Opt.
37
,
1194
1204
(
1998
).
41.
D. B.
Chenault
,
R. A.
Chipman
, and
S.-Y.
Lu
, “
Electro-optic coefficient spectrum of cadmium telluride
,”
Appl. Opt.
33
,
7382
(
1994
).
42.
G. L.
Herrit
and
H. E.
Reedy
, “
Measurement of the birefringence in cadmium telluride electro-optic modulators
,”
Proc. SPIE
1307
,
509
516
(
1990
).
43.
G.
Saleh
and
A. R.
Oganov
, “
Novel stable compounds in the C-H-O ternary system at high pressure
,”
Sci. Rep.
6
,
32486
(
2016
).
44.
T.
Guillot
and
D.
Gautier
, “
Giant planets
,” in
Treatise on Geophysics
, 2nd ed.arXiv:0912.2019.
45.
B.
Journaux
,
I.
Daniel
,
S.
Petitgirard
,
H.
Cardon
,
J.-P.
Perrillat
,
R.
Caracas
, and
M.
Mezouar
, “
Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies
,”
Earth Planet. Sci. Lett.
463
,
36
47
(
2017
).
You do not currently have access to this content.