Temperature measurement using Scanning Thermal Microscopy (SThM) usually involves heat transfer across the mechanical contact and liquid meniscus between the thermometer probe and the sample. Variations in contact conditions due to capillary effects at sample-probe contact and wear and tear of the probe and sample interfere with the accurate determination of the sample surface temperature. This paper presents a method for quantitative temperature sensing using SThM in noncontact mode. In this technique, the thermal probe is scanned above the sample at a distance comparable with the mean free path of ambient gas molecules. A Three-Dimensional Finite Element Model (3DFEM) that includes the details of the heat transfer between the sample and the probe in the diffusive and transition heat conduction regimes was found to accurately simulate the temperature profiles measured using a Wollaston thermal probe setup. In order to simplify the data reduction for the local sample temperature, analytical models were developed for noncontact measurements using Wollaston probes. Two calibration strategies (active calibration and passive calibration) for the sample-probe thermal exchange parameters are presented. Both calibration methods use sample-probe thermal exchange resistance correlations developed using the 3DFEM to accurately capture effects due to sample-probe gap geometry and the thermal exchange radii in the diffusive and transition regimes. The analytical data reduction methods were validated by experiments and 3DFEM simulations using microscale heaters deposited on glass and on dielectric films on silicon substrates. Experimental and predicted temperature profiles were independent of the probe-sample clearance in the range of 100–200 nm, where the sample-probe thermal exchange resistance is practically constant. The difference between the SThM determined and actual average microheater temperature rise was between 0.1% and 0.5% when using active calibration on samples with known thermal properties and between ∼1.6% and 3.5% when using passive calibration, which yields robust sample-probe thermal exchange parameters that can be used also on samples with unknown thermal properties.

1.
R.
Heiderhoff
,
A.
Makris
, and
T.
Riedl
, “
Thermal microscopy of electronic materials
,”
Mater. Sci. Semicond. Process.
43
,
163
(
2016
).
2.
M.
Kuball
,
S.
Rajasingam
,
A.
Sarua
,
M.
Uren
,
T.
Martin
,
B. T.
Hughes
,
K. P.
Hilton
, and
R.
Balmer
, “
Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy
,”
Appl. Phys. Lett.
82
,
124
(
2003
).
3.
A.
Soudi
,
R. D.
Dawson
, and
Y.
Gu
, “
Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy
,”
ACS Nano
5
,
255
(
2011
).
4.
K. E.
Goodson
and
M.
Asheghi
, “
Near-field optical thermometry
,”
Microscale Thermophys. Eng.
1
,
225
235
(
1997
).
5.
T.
Fujii
,
Y.
Taguchi
,
T.
Saiki
, and
Y.
Nagasaka
, “
Near-field fluorescence thermometry using highly efficient triple-tapered near-field optical fiber probe
,”
Rev. Sci. Instrum.
83
,
124901
(
2012
).
6.
D.
Teyssieux
,
L.
Thiery
, and
B.
Cretin
, “
Near-infrared thermography using a charge-coupled device camera: Application to microsystems
,”
Rev. Sci. Instrum.
78
,
034902
(
2007
).
7.
D.
Teyssieux
,
D.
Briand
,
J.
Charnay
,
N. F.
de Rooij
, and
B.
Cretin
, “
Dynamic and static thermal study of micromachined heaters: The advantages of visible and near-infrared thermography compared to classical methods
,”
J. Micromech. Microeng.
18
,
065005
(
2008
).
8.
A.
Majumdar
, “
Scanning thermal microscopy
,”
Annu. Rev. Mater. Sci.
29
,
505
(
1999
).
9.
E.
Nasr Esfahani
,
F.
Ma
,
S.
Wang
,
Y.
Ou
,
J.
Yang
, and
J.
Li
, “
Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy
,”
Natl. Sci. Rev.
5
,
59
(
2017
).
10.
A.
Wilson
and
T.
Borca-Tasciuc
, “
Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes
,”
Rev. Sci. Instrum.
88
,
074903
(
2017
).
11.
Y.
Zhang
,
E.
Castillo
,
R.
Mehta
,
G.
Ramanath
, and
T.
Borca-Tasciuc
, “
A noncontact thermal microprobe for local thermal conductivity measurement
,”
Rev. Sci. Instrum.
82
,
024902
(
2011
).
12.
A. A.
Wilson
, “
Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method
,” Ph.D. dissertation (
Rensselaer Polytechnic Institute, Troy
,
New York
,
2017
).
13.
K.
Kim
,
J.
Chung
,
J.
Won
,
O.
Kwon
,
J.
Sik Lee
,
S.
Park
, and
Y. K.
Choi
, “
Quantitative scanning thermal microscopy with double scan technique
,”
Appl. Phys. Lett.
93
,
203115
(
2008
).
14.
W.
Jeong
,
S.
Hur
,
E.
Meyhofer
, and
P.
Reddy
, “
Scanning probe microscopy for thermal transport measurements
,”
Nanoscale Microscale Thermophys. Eng.
19
,
279
(
2015
).
15.
J.
Chung
,
K.
Kim
,
G.
Hwang
,
O.
Kwon
,
S.
Jung
,
J.
Lee
,
J. W.
Lee
, and
G.
Tae Kim
, “
Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method
,”
Rev. Sci. Instrum.
81
,
114901
(
2010
).
16.
J.
Chung
,
K.
Kim
,
G.
Hwang
,
O.
Kwon
,
Y. K.
Choi
, and
J. S.
Lee
, “
Quantitative temperature profiling through null-point scanning thermal microscopy
,”
Int. J. Thermal Sci.
62
,
109
(
2011
).
17.
G.
Hwang
and
O.
Kwon
, “
Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy
,”
Nanoscale
8
,
5280
(
2016
).
18.
F.
Menges
,
H.
Riel
,
A.
Stemmer
, and
B.
Gotsmann
, “
Temperature mapping of operating nanoscale devices by scanning probe thermometry
,”
Nat. Commun.
7
,
10874
(
2016
).
19.
F.
Menges
,
F.
Könemann
,
H.
Schmid
,
P.
Mensch
,
M.
Dittberner
,
S.
Karg
,
H.
Riel
, and
B.
Gotsmann
, “
Local thermometry of self-heated nanoscale devices
,” in
Proceedings of 2016 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2016
), pp.
3
7
.
20.
F.
Menges
,
H.
Riel
,
A.
Stemmer
, and
B.
Gotsmann
, “
Quantitative thermometry of nanoscale hot spots
,”
Nano Lett.
12
,
596
(
2012
).
21.
T.
Borca-Tasciuc
, “
Scanning probe methods for thermal and thermoelectric property measurements
,”
Annu. Rev. Heat Transfer
16
,
211
(
2013
).
22.
H.
Fischer
, “
Quantitative determination of heat conductivities by scanning thermal microscopy
,”
Thermochim. Acta
425
,
69
(
2005
).
23.
P.
Klapetek
,
I.
Ohlídal
, and
J.
Buršík
, “
Applications of scanning thermal microscopy in the analysis of the geometry of patterned structures
,”
Surf. Interface Anal.
38
,
383
(
2006
).
24.
S.
Gomès
,
A.
Assy
, and
P.-O.
Chapuis
, “
Scanning thermal microscopy: A review
,”
Phys. Status Solidi A
212
,
477
(
2015
).
25.
W.
Jeong
,
K.
Kim
,
Y.
Kim
,
W.
Lee
, and
P.
Reddy
, “
Corrigendum: Characterization of nanoscale temperature fields during electromigration of nanowires
,”
Sci. Rep.
4
,
5690
(
2014
).
26.
K.
Kim
,
W.
Jeong
,
W.
Lee
, and
P.
Reddy
, “
Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry
,”
ACS Nano
6
,
4248
(
2012
).
27.
Y.-J.
Yu
,
M. Y.
Han
,
S.
Berciaud
,
A. B.
Georgescu
,
T.
Heinz
,
L. E.
Brus
,
K.
Kim
, and
P.
Kim
, “
High-resolution spatial mapping of the temperature distribution of a Joule self-heated graphene nanoribbon
,”
Appl. Phys. Lett.
99
,
183105
(
2011
).
28.
L.
Shi
,
J.
Zhou
,
P.
Kim
,
A.
Bachtold
,
A.
Majumdar
, and
P.
McEuen
, “
Thermal probing of energy dissipation in current-carrying carbon nanotubes
,”
J. Appl. Phys.
105
,
104306
(
2009
).
29.
P.-O.
Chapuis
,
J.-J.
Greffet
,
K.
Joulain
, and
S.
Volz
, “
Heat transfer between a nano-tip and a surface
,”
Nanotechnology
17
,
2978
(
2006
).
30.
Y.
Zhang
,
W.
Zhu
,
F.
Hue
,
M.
Lanza
,
T.
Borca-Tasciuc
, and
M. M.
Rojo
, “
A review on principles and applications of scanning thermal microscopy (SThM)—A review
,”
Adv. Funct. Mater.
1900892
(
2019
).
31.
K.
Kim
,
L.
Cui
, and
V.
Fernández-Hurtado
, “
Radiative heat transfer in the extreme near field
,”
Nature
528
,
387
(
2015
).
32.
L.
Han
, “
Development of a non-contact scanning temperature sensing method and characterization of ZT in pnictogen-chalcogen alloys
,” Ph.D. dissertation (
Rensselaer Polytechnic Institute, Troy
,
New York
,
2014
).
33.
A.
Wilson
,
M.
Rojo
,
B.
Abad
,
J.
Perez Taborda
,
J.
Maiz
,
J.
Schomacker
,
M.
Martín-González
,
D.-A.
Borca-Tasciuc
, and
T.
Borca-Tasciuc
, “
Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3ω mode and novel calibration strategies
,”
Nanoscale
7
,
15404
(
2015
).
34.
COMSOL Multiphysics, COMSOL multiphysics user guide (Version 4.3 a),
2012
.
35.
R. H.
Perry
and
D. W.
Green
,
Perry’s Chemical Engineers’ Handbook
, 7th ed. (
McGraw-Hill
,
1997
).
36.
J.
Bodzenta
,
J.
Juszczyk
, and
M.
Chirtoc
, “
Quantitative scanning thermal microscopy based on determination of thermal probe dynamic resistance
,”
Rev. Sci. Instrum.
84
,
093702
(
2013
).
37.
M.
Calvert
and
J.
Baker
, “
Thermal conductivity and gaseous microscale transport
,”
J. Thermophys. Heat Transfer
12
,
138
(
1998
).
38.
W. D.
Zhou
,
B.
Liu
,
S.
yu
, and
W.
Hua
, “
Rarefied-gas heat transfer in micro- and nanoscale Couette flows
,”
Phys. Rev. E
81
,
011204
(
2010
).
39.
C.-Y.
Zhu
,
Z.-Y.
Li
, and
W.-Q.
Tao
, “
Theoretical and DSMC studies on heat conduction of argon gas in a cubic nanopore
,”
J. Heat Transfer
139
,
052405
(
2017
).
40.
Y.
Zhang
, “
Thermal and thermoelectric transport in nanostructured materials from pnictogen chalcogenide nanoplate crystals
,” Ph.D. dissertation (
Rensselaer Polytechnic Institute, Troy
,
New York
,
2011
).
41.
Y.
Ge
,
Y.
Zhang
,
J.
Booth
,
J. M. R.
Weaver
, and
P. S.
Dobson
, “
Quantification of probe-sample interactions of a scanning thermal microscope using a nanofabricated calibration sample having programmable size
,”
Nanotechnology
27
,
325503
(
2016
).

Supplementary Material

You do not currently have access to this content.